A black rectangular surface of area ‘A’ emits energy ‘E’ per second at 27^{\circ} \mathrm{C}. If length and breadth are reduced to \frac{1}{3} rd of initial value and temperature is raised to 327^{\circ} \mathrm{C} then energy emitted per second becomes
A) \frac{4 \mathrm{E}}{9}
B) \frac{7 E}{9}
C) \frac{10 \mathrm{E}}{9}
D) \frac{16 \mathrm{E}}{9}
A black rectangular surface of area ‘A’ emits energy ‘E’ per second at 27^{\circ} \mathrm{C}. If length and breadth are reduced to \frac{1}{3} rd of initial value and temperature is raised to 327^{\circ} \mathrm{C} then energy emitted per second becomes
A) \frac{4 \mathrm{E}}{9}
B) \frac{7 E}{9}
C) \frac{10 \mathrm{E}}{9}
D) \frac{16 \mathrm{E}}{9}

Answer is (D)
\mathrm{E}=\mathrm{e} \sigma \cdot \mathrm{A}\left(\mathrm{T}^{4}-\mathrm{T}_{0}^{4}\right) \text { and } \mathrm{A}=\ell \mathrm{b}
When \ell and b changes to \frac{\ell}{3} is and \frac{b}{3}
\begin{array}{l} A \rightarrow \frac{A}{9} \\ \frac{E^{\prime}}{E}=\frac{A^{\prime}}{A} \frac{(327+373)^{4}}{(27+273)^{4}} \\ \therefore \frac{E^{\prime}}{E}=\frac{1}{9}\left(\frac{600}{300}\right)^{4} \\ \therefore E^{\prime}=\frac{1}{9} \times(2)^{4} \times E \\ E^{\prime}=\frac{16 E}{9} \end{array}