A particular resistance wire has a resistance of 3 ohm per meter. Find:
(a) The total resistance of three lengths of this wire each 1.5 m long, in parallel.
(b) The potential difference of the battery which gives a current of 2 A in each of the 1.5 m length when connected in the parallel to the battery (assume that resistance of the battery is negligible).
(c) The resistance of 5 m length of a wire of the same material, but with twice the area of cross section
A particular resistance wire has a resistance of 3 ohm per meter. Find:
(a) The total resistance of three lengths of this wire each 1.5 m long, in parallel.
(b) The potential difference of the battery which gives a current of 2 A in each of the 1.5 m length when connected in the parallel to the battery (assume that resistance of the battery is negligible).
(c) The resistance of 5 m length of a wire of the same material, but with twice the area of cross section

(a) Wire resistance per metre = 3 ohm

As a result, the resistance of three 1.5 m long sections of this wire = 3 × 1.5 = 4.5 W

1 / R = 1 / 4.5 + 1 / 4.5 + 1 / 4.5

1 / R = 3 / 4.5

R = 1.5 ohm

(b) I = 2 A

V = IR

V = 2 × 4.5

V = 9 V

(c) For a 1 metre wire, R = 3 ohm

For a distance of 5 metres

R = 3 × 5

R = 15 ohm

Resistance is inversely proportional to area when the area is doubled, i.e. 2 A. As a result, resistance is reduced by half.

R = 15 / 2

R = 7.5 ohm