A ring and a disc roll on the horizontal surface without slipping with same linear velocity. If both have same mass and total kinetic energy of the ring is 4 \mathrm{~J} then total kinetic energy of the disc is
A)3 J
B)4 J
C)5 J
D)6 J
A ring and a disc roll on the horizontal surface without slipping with same linear velocity. If both have same mass and total kinetic energy of the ring is 4 \mathrm{~J} then total kinetic energy of the disc is
A)3 J
B)4 J
C)5 J
D)6 J

Correct option is A.

Total kinetic energy of the body \mathrm{K} \cdot \mathrm{E}_{\text {total }}=\left(\frac{1}{2} \mathrm{mv}^{2}\right)_{\text {translational }}+ \left(\frac{1}{2} \mathrm{Iw}^{2}\right)_{\text {rotational }}

Total kinetic energy of the ring K, E_{\text {ring }}=\frac{1}{2} \mathrm{mv}^{2}+\frac{1}{2}\left(\mathrm{Mr}^{2}\right) \mathrm{w}^{2}

\begin{array}{l} \text { K. } \left.E_{\text {ring }}=\frac{1}{2} m v^{2}+\frac{1}{2} M v^{2}=M v^{2} \quad \text { (for pure rolling } v=r w\right) \\ \Longrightarrow m v^{2}=4 \end{array}

Total kinetic energy of the ring \mathrm{K}, \mathrm{E}_{\text {ring }}=\frac{1}{2} \mathrm{mv}^{2}+\frac{1}{2}\left(\frac{1}{2} \mathrm{Mr}^{2}\right) \mathrm{w}^{2}
\begin{array}{l} \left.K \cdot E_{\text {disc }}=\frac{1}{2} m_{v}^{2}+\frac{1}{4} M v^{2}=\frac{3}{4} \mathrm{Mv}^{2} \quad \text { (for pure rolling } \mathrm{v}=\mathrm{rw}\right) \\ \Longrightarrow \mathrm{K}, \mathrm{E}_{\text {disc }}=\frac{3}{4} \times 4=3 \mathrm{~J} \end{array}