A short electric dipole has a dipole moment of 16 \times 10^{-9} \mathrm{C} \mathrm{m}. The electric potential due to the dipole at a point at a distance of 0.6 \mathrm{~m} from the centre of the dipole, situated on a line making an angle of 60^{\circ} with the dipole axis is :
\left(\frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}\right)
(1) 400 \mathrm{~V}
(2) Zero
(3) 50 \mathrm{~V}
(4) 200 \mathrm{~V}
A short electric dipole has a dipole moment of 16 \times 10^{-9} \mathrm{C} \mathrm{m}. The electric potential due to the dipole at a point at a distance of 0.6 \mathrm{~m} from the centre of the dipole, situated on a line making an angle of 60^{\circ} with the dipole axis is :
\left(\frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}\right)
(1) 400 \mathrm{~V}
(2) Zero
(3) 50 \mathrm{~V}
(4) 200 \mathrm{~V}

Correct option 4)

Using the formula and evaluating,

\quad \mathrm{V}=\frac{\mathrm{kP} \cos \theta}{\mathrm{r}^{2}}=\frac{9 \times 10^{9} \times 16 \times 10^{-9} \times 1}{(0.6)^{2} \times 2}=\frac{400}{2}=200