A straight conductor carrying current i splits into two parts as shown in the figure. The radius of the circular loop is R. The total magnetic field at the centre P of the loop is, (1) \frac{\mu_{0} i}{2 R}, inward (2) Zero (3) 3 \mu_{0} / 32 R, outward (4) 3 \mu_{0} i / 32 R, inward
A straight conductor carrying current i splits into two parts as shown in the figure. The radius of the circular loop is R. The total magnetic field at the centre P of the loop is, (1) \frac{\mu_{0} i}{2 R}, inward (2) Zero (3) 3 \mu_{0} / 32 R, outward (4) 3 \mu_{0} i / 32 R, inward

Answer (2)

Solution:

Net magnetic field at point ‘P’
\mathbf{B}_{\text {net }}=\overrightarrow{\mathbf{B}_{1}}+\overline{\mathbf{B}_{2}}
Here \bar{B}_{1} and \bar{B}_{2} are equal in magnitude and opposite in direction.
Hence, \mathbf{B}_{\text {net }}=\mathbf{B}_{1}-\mathbf{B}_{2}
\vec{i}_{1}=i\left(\frac{\theta}{2 \pi}\right) \Rightarrow \mathbf{B}_{1}=\frac{\mu_{0} \dot{L}_{1}}{2 R}\left(\frac{2 \pi-\theta}{2 \pi}\right)
\dot{i}_{2}=i\left(\frac{2 \pi-\theta}{2 \pi}\right) \Rightarrow \mathbf{B}_{2}=\frac{\mu_{0} \mathrm{i}_{2}}{2 R}\left(\frac{\theta}{2 \pi}\right)
B_{\text {net }}=B_{1}-B_{2}=0