Assuming the expression for the pressure exerted by the gas on the walls of the container, it can be shown that pressure is
A) [\frac{1}{3}]^{rd} kinetic energy per unit volume of a gas
B) [\frac{2}{3}]^{rd} kinetic energy per unit volume of a gas
C) [\frac{3}{4}]^{th} kinetic energy per unit volume of a gas
D) \frac{3}{2}\times kinetic energy per unit volume of a gas
Assuming the expression for the pressure exerted by the gas on the walls of the container, it can be shown that pressure is
A) [\frac{1}{3}]^{rd} kinetic energy per unit volume of a gas
B) [\frac{2}{3}]^{rd} kinetic energy per unit volume of a gas
C) [\frac{3}{4}]^{th} kinetic energy per unit volume of a gas
D) \frac{3}{2}\times kinetic energy per unit volume of a gas

Answeris (B)
The pressure exerted by the gas on the walls of container is \mathrm{P}=\mathrm{P}_{0}+\mathrm{P}_{1}+\mathrm{P}_{2}
i.e. \quad \mathrm{P}=\mathrm{P}_{0}+\frac{1}{3} 8 \mathrm{v}^{2}+3 \mathrm{gh}
For a container, P_{1}=\frac{1}{3} \rho v^{2}=\frac{1}{3} \frac{m}{V} \cdot v^{2} \times \frac{2}{2}=\frac{2}{3} \mathrm{~K} . E