Calculate the mean deviation about the mean of the set of first n natural numbers when \mathrm{n} is an even number.
Calculate the mean deviation about the mean of the set of first n natural numbers when \mathrm{n} is an even number.

Solution:

It is given that set of first n natural numbers when \mathrm{n} is an even number.

We now need to find the mean deviation about the mean

It is known that the first n natural numbers are 1,2,3 \ldots . \ldots \mathrm{n}. And given n is even number.

Therefore the mean is,

\overline{\mathrm{x}}=\frac{1+2+3+\cdots+\mathrm{n}}{\mathrm{n}}=\frac{\frac{\mathrm{n}(\mathrm{n}+1)}{2}}{\mathrm{n}}=\frac{(\mathrm{n}+1)}{2}

Deviations of numbers from the mean are as shown below,

1-\frac{(n+1)}{2}, 2-\frac{(n+1)}{2}, 3-\frac{(n+1)}{2}, \ldots, \frac{(n-2)}{2}-\frac{(n+1)}{2}, \frac{(n)}{2} -\frac{(n+1)}{2}, \frac{(n+2)}{2}-\frac{(n+1)}{2}, \ldots, n-\frac{(n+1)}{2}

Or, \frac{2-(n+1)}{2}, \frac{4-(n+1)}{2}, \frac{6-(n+1)}{2}, \ldots, \frac{n-2-(n+1)}{2}, \frac{n-(n+1)}{2}, \frac{(n+2)-(n+1)}{2}, \ldots, \frac{2 n-(n+1)}{2}

Above eq. can be written as \frac{2-(n+1)}{2}, \frac{4-(n+1)}{2}, \frac{6-(n+1)}{2}, \ldots \ldots, \frac{-3}{2}, \frac{-1}{2}, \frac{1}{2} \ldots, \frac{2 n-(n+1)}{2}

Or,

\frac{1-\mathrm{n}}{2}, \frac{3-\mathrm{n}}{2}, \frac{5-\mathrm{n}}{2}, \ldots \ldots, \frac{-3}{2}, \frac{-1}{2}, \frac{1}{2}, \ldots, \frac{\mathrm{n}-1}{2}

Therefore, the absolute values of deviation from the mean is

\left|\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right|=\frac{(\mathrm{n}-1)}{2}, \frac{(\mathrm{n}-3)}{2}, \frac{(\mathrm{n}-5)}{2}, \ldots \ldots, \frac{3}{2}, \frac{1}{2}, \frac{1}{2}, \ldots, \frac{\mathrm{n}-1}{2}

Sum of absolute values of deviations from the mean, is \sum\left|x_{i}-\bar{x}\right|=\frac{(n-1)}{2}+\frac{(n-3)}{2}+\frac{(n-5)}{2}+\cdots+\frac{3}{2}+\frac{1}{2}+\frac{1}{2}+\cdots+\frac{n-1}{2}

It can be written as

\sum\left|\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right|=\left(\frac{1}{2}+\frac{3}{2}+\cdots+\frac{(\mathrm{n}-1)}{2}\right)\left(\frac{\mathrm{n}}{2}\right)

It is known that the sum of first n natural numbers =n^{2}

Hence, the mean deviation about the mean is

M.D =\frac{\sum\left|x_{i}-\bar{x}\right|}{n}=\frac{\left(\frac{1}{2}+\frac{3}{2}+\cdots+\frac{(n-1)}{2}\right)\left(\frac{n}{2}\right)}{n}

M. D=\frac{\sum\left|x_{i}-\bar{x}\right|}{n}=\frac{\left(\frac{n}{2}\right)^{2}}{n}

M. D=\frac{\sum\left|x_{i}-\bar{x}\right|}{n}=\frac{n^{2}}{4 n}=\frac{n}{4}

As a result, n / 4 is the mean deviation about the mean of the set of first n natural numbers when n is an even number.