Calculate the wavenumber for the longest wavelength transition in the Balmer series of atomic hydrogen.
Calculate the wavenumber for the longest wavelength transition in the Balmer series of atomic hydrogen.

The Balmer series of the hydrogen emission spectrum, ni = 2.

Hence,  wavenumber expression  is:

\bar{\nu}=\left[\frac{1}{(2)^{2}}-\frac{1}{n_{f}^{2}}\right]\left(1.097 \times 10^{7} \mathrm{~m}^{-1}\right)
Since wave number (\bar{\nu}) is inversely proportional to the transition wavelength, the lowest possivle value of (\bar{\nu}) corresponds to the longest wavelength transition.

For (\bar{\nu}) to be of the lowest possible value, n_{f} should be minimum. In the Balmer series, transitions from n_{i}=2 to \mathrm{n}_{\mathrm{f}}=3 are allowed.
Hence, taking \mathrm{n}_{\mathrm{f}}=3, we get:
\begin{array}{l} \bar{\nu}=\left(1.097 \times 10^{7}\right)\left[\frac{1}{(2)^{2}}-\frac{1}{3^{2}}\right] \\ \bar{\nu}=\left(1.097 \times 10^{7}\right)\left[\frac{1}{4}-\frac{1}{9}\right] \\ =\left(1.097 \times 10^{7}\right)\left[\frac{9-4}{36}\right] \\ =\left(1.097 \times 10^{7}\right)\left[\frac{5}{36}\right] \\ \bar{\nu}=1.5236 \times 10^{6} \mathrm{~m}^{-1} \end{array}