Solution: $\begin{array}{l} \vec{a}=6 \hat{\imath}-3 \hat{\jmath}-6 \hat{k} \\ \vec{b}=\hat{\imath}+\hat{\jmath}+\hat{k} \end{array}$ Let $\vec{a}$ be written as sum of $\vec{c}+\vec{d}$, where...
Express the vector
Find the angle between
and
, if
and
.
Solution: $\begin{array}{l} \text { Given: } \vec{a}=2 \hat{\imath}-\hat{\jmath}+3 \hat{k} \\ \vec{b}=3 \hat{\imath}+\hat{\jmath}+2 \hat{k} \\ \vec{a}+\vec{b}=5 \hat{\imath}+5 \hat{k} \\...
Find a vector
of magnitude
, making an angle
with
– axis,
with
– axis and an acute angle
with z – axis.
Solution: $\mathrm{I} \overrightarrow{\mathrm{a}} \mathrm{I}=5 \sqrt{2}$ Also it is given that $\alpha=\frac{\pi}{4}$ $\beta=\frac{\pi}{2}, \gamma=$ acute angle. So from this $\cos...
Show that the vector
is equally inclined to the coordinate axes.
Solution: $\begin{array}{l} \vec{a}=\cos \gamma=\frac{1}{\sqrt{3}} \\ \mathrm{I} \vec{a} \mathrm{I}=\sqrt{1^{2}+1^{2}+1^{2}}=\sqrt{3} \end{array}$ Since direction cosines or cosines of angle made by...
Find the angles which the vector
makes with the coordinate axes.
Solution: Direction cosines gives the angle made by the vector with $x$-axis, $y-$ axis, z-axis respectively. $\begin{array}{l} \vec{a}=3 \hat{\imath}-6 \hat{\jmath}+2 \hat{k} \\ \mathrm{I} \vec{a}...
If
is a unit vector such that
, find
.
Solution: Given: $\mathrm{I} \vec{a} \mathrm{I}=1$ $\begin{array}{l} (\vec{x}-\vec{a}) \cdot(\vec{x}+\vec{a})=8 \\ \vec{x} \cdot \vec{x}+\vec{x} \cdot \vec{a}-\vec{a} \cdot \vec{x}-\vec{a} \cdot...
If
and
then calculate the angle between
and
.
Solution: $\vec{a}=\hat{\imath}+2 \hat{\jmath}-3 \hat{k}$ $\vec{b}=3 \hat{\imath}-\hat{\jmath}+2 \hat{k}$ $\begin{array}{l}2 \vec{a}+\vec{b} & =2(\hat{\imath}+2 \hat{\jmath}-3 \hat{k})+(3...
Find the angle between the vectors
and
, when
i.
and
ii.
and
iii.
and
.
Solution: $\begin{array}{l} \text { i) } \vec{a}=\hat{\imath}-2 \hat{\jmath}+3 \hat{k} \\ \vec{b}=3 \hat{\imath}-2 \hat{\jmath}+\hat{k} \\ \mathrm{I} \vec{a}...
Write the projection of vector
along the vector
.
Solution: $\begin{array}{l} \vec{a}=\hat{\imath}+\hat{\jmath}+\hat{k} \\ \vec{b}=\hat{\jmath} \end{array}$ $\mathrm{I} \vec{a} \mathrm{I}=\sqrt{3}=\sqrt{1^{2}+1^{2}+1^{2}}$ $\begin{array}{l}...
Let
and
. Find the projection of (i)
on
and (ii)
on
.
Solution: If $\vec{a}=\mathrm{a} 1 \hat{\imath}+\mathrm{a} 2 \hat{\jmath}+\mathrm{a}_{3} \hat{k}$ and $\vec{b}=\mathrm{b}_{1} \hat{\imath}+\mathrm{b}_{2} \hat{\jmath}+\mathrm{b}_{3} \hat{k}$, then...
Show that the vectors
are mutually perpendicular unit vectors.
Solution: $\begin{array}{l} \vec{a}=\frac{1}{7}(2 \hat{\imath}+3 \hat{\jmath}+6 \hat{k}) \\ \vec{b}=\frac{1}{7}(3 \hat{\imath}-6 \hat{\jmath}+2 \hat{k}) \\ \vec{c}=\frac{1}{7}(6 \hat{\imath}+2...
If
and
then find the value of
so that
and
are orthogonal vectors.
Solution: $\begin{array}{l} \vec{a}=\hat{\imath}-1 \hat{\jmath}+7 \hat{k} \\ \vec{b}=5 \hat{\imath}-1 \hat{\jmath}+\lambda \hat{k} \\ \vec{a}+\vec{b}=6 \hat{\imath}-2 \hat{\jmath}+(7+\lambda)...
i. If
and
, show that
is perpendicular to
.
ii. If
and
then show that
and
are orthogonal.
Solution: If two vectors are perpendicular or orthogonal then their dot product is zero. $\begin{array}{l} \text { i) } \quad \vec{a}=\hat{\imath}+2 \hat{\jmath}-3 \hat{k} \\ \vec{b}=3...
Find
when
i.
and
ii.
and
iii.
and 
Solution: If $\vec{a}=\mathrm{a} 1 \hat{\imath}+\mathrm{a} 2 \hat{\jmath}+\mathrm{a} 3 \hat{k}$ and $\vec{b}=\mathrm{b}_{1} \hat{\imath}+\mathrm{b}_{2} \hat{\jmath}+\mathrm{b}_{3} \hat{k}, \text {...
Write a unit vector in the direction of
, where
and
are the points
and
respectively.
Solution: $\begin{array}{l} \overrightarrow{O P}=\hat{\imath}+3 \hat{\jmath} \\ \overrightarrow{O Q}=4 \hat{\imath}+5 \hat{\jmath}+6 \hat{k} \\ \overrightarrow{P Q}=\overrightarrow{O...
Find the position vector of the mid-point of the vector joining the points
and 
Solution: $\begin{array}{l} \overrightarrow{O A}=3 \hat{\imath}+2 \hat{\jmath}+6 \hat{k} \\ \overrightarrow{O B}=\hat{\imath}+4 \hat{\jmath}-2 \hat{k} \end{array}$ Let $\mathrm{C}$ be the mid-point...
Find the position vector of a point
which divides the line joining
and
in the ratio
(i) internally (ii) externally.
Solution: $\begin{array}{l} \overrightarrow{O A}=-2 \hat{\imath}+\hat{\jmath}+3 \hat{k} \\ \overrightarrow{O B}=3 \hat{\imath}+5 \hat{\jmath}-2 \hat{k} \end{array}$ (i) $\mathrm{R}$ divides...
The position vectors of two points
and
are
and
respectively. Find the position vector of a point
which divides
externally in the ratio
. Also, show that
is the mid-point of the line segment
.
Solution: Given: $\overrightarrow{O A}=(2 \vec{a}+\vec{b})$ $\overrightarrow{O B}=(\vec{a}-3 \vec{b})$ Position vector of $\mathrm{C}$ which divides $\mathrm{AB}$ in the ratio $1: 2$ externally is...
Find the position vector of the point which divides the join of the points
and
(i) internally and (ii) externally in the ratio 
Solution: Given: $\overrightarrow{O A}=(2 \vec{a}-3 \vec{b})$ $\overrightarrow{O B}=(3 \vec{a}-2 \vec{b})$ (i) Let $\mathrm{P}$ be the point that divides $\mathrm{A}, \mathrm{B}$ internally in the...
Using vector method, show that the points
and
are the vertices of a rightangled triangle.
Solution: $\begin{array}{l} \overrightarrow{O A}=\hat{\imath}-\hat{\jmath} \\ \overrightarrow{O B}=4 \hat{\imath}-3 \hat{\jmath}+\hat{k} \\ \overrightarrow{O C}=2 \hat{\imath}-4 \hat{\jmath}+5...
If the position vectors of the vertices
and
of a
be
and
, respectively, prove that
is equilateral.
Solution: $\begin{array}{l} \overrightarrow{O A}=\hat{\imath}+2 \hat{\jmath}+3 \hat{k} \\ \overrightarrow{O B}=2 \hat{\imath}+3 \hat{\jmath}+\hat{k} \\ \overrightarrow{O C}=3...
Show that the points
and
having position vectors
and
respectively, are collinear.
Solution: $\begin{array}{l} \overrightarrow{O A}=\hat{\imath}+2 \hat{\jmath}+7 \hat{k} \\ \overrightarrow{O B}=2 \hat{\imath}+6 \hat{\jmath}+2 \hat{k} \\ \overrightarrow{O C}=3 \hat{\imath}+10...
If
and
, find 
Solution: $\begin{array}{l} \vec{a}=\hat{\imath}-2 \hat{\jmath} \\ \vec{b}=2 \hat{\imath}-3 \hat{\jmath} \\ \vec{c}=2 \hat{\imath}+3 \hat{k} \\ \vec{a}+\vec{b}+\vec{c}=(\hat{\imath}-2...
Find a vector of magnitude 8 units in the direction of the vector
.
Solution: $\vec{A}=5 \hat{\imath}-\hat{\jmath}+2 \hat{k}$ Magnitude of required vector is 8 units $\mathrm{I} \vec{A} \mathrm{I}=\sqrt{5^{2}+1^{2}+2^{2}}=\sqrt{25+1+4}=\sqrt{30}$ $\begin{array}{l}...
Find a vector of magnitude 9 units in the direction of the vector
.
Solution: $\vec{A}=-2 \hat{\imath}+\hat{\jmath}+2 \hat{k}$ $\mathrm{I} \vec{A} \mathrm{I}=\sqrt{(-2)^{2}+1^{2}+2^{2}}=\sqrt{4+1+4}=\sqrt{9}=3$ Note: Any vector $\vec{X}$ is given by $\vec{X}=$...
If
and
then find a unit vector parallel to
.
Solution: $\begin{array}{l} \vec{a}=\hat{\imath}+2 \hat{\jmath}-3 \hat{k} \\ \vec{b}=2 \hat{\imath}+4 \hat{\jmath}+9 \hat{k} \end{array}$ Then $\vec{a}+\vec{b}=(\hat{\imath}+2 \hat{\jmath}-3...
If
and
then find a unit vector in the direction of
.
Solution: $\begin{array}{l} \vec{a}=3 \hat{\imath}+\hat{\jmath}-5 \hat{k} \\ \vec{b}=\hat{\imath}+2 \hat{\jmath}-\hat{k} \end{array}$ Then $\vec{a}-\vec{b}=(3 \hat{\imath}+\hat{\jmath}-5...
If
and
then find the unit vector in the direction of
.
Solution: $\vec{a}=-\hat{\imath}+\hat{\jmath}-\hat{k}$ $\vec{b}=2 \hat{\imath}-\hat{\jmath}+2 \hat{k}$ Then $(\vec{a}+\vec{b})=(-\hat{\imath}+\hat{\jmath}-\hat{k})+(2 \hat{\imath}-\hat{\jmath}+2...
Find a unit vector in the direction of the vector:
A.
B.
C.
D. 
Solution: If $\vec{a}=\mathrm{a}_{1} \hat{\imath}+\mathrm{a}_{2} \hat{\jmath}+\mathrm{a}_{3} \hat{k}$, then Unit vector in the direction of $\vec{a}$ can be given by $\hat{a}=\frac{\vec{a}}{I...
Write down the magnitude of each of the following vectors:
A.
B.
C.
D. 
Solution: A. $\vec{a}=\hat{\imath}+2 \hat{\jmath}+5 \hat{k}$ If $\vec{a}=\mathrm{a}_{1} \hat{\imath}+\mathrm{a}_{2} \hat{\jmath}+\mathrm{a}_{3} \hat{k}$, then $\mathrm{I} \vec{a}...
Mark (√) against the correct answer in the following: The general solution of the
is
A.
B.
C.
D. None of these
Solution: $\frac{\mathrm{dy}}{\mathrm{dx}}+\frac{\mathrm{y}}{\mathrm{x}}=\mathrm{x}^{2}$ Comparing with $\frac{d y}{d x}+P y=Q$ Integrating factor $=\mathrm{x}$ General solution is $\mathrm{yx}=\int...
Mark (√) against the correct answer in the following: The general solution of the DE
is
A.
B.
C.
D. None of these
Solution: $\frac{d y}{d x}+y \operatorname{Cot} x=2 \operatorname{Cos} x$ Comparing with $\frac{d y}{d x}+P y=Q$ Integrating factor is $e^{\int \cot x d x}=\operatorname{Sin} x$ General solution is...
Mark (√) against the correct answer in the following: The general solution of the
A.
B.
C.
D. None of these
Solution: $\frac{\mathrm{dy}}{\mathrm{dx}}+\mathrm{y} \tan \mathrm{x}=\mathrm{Secx}$ Comparing with $\frac{d y}{d x}+P y=Q$ Integrating factor $e^{\int \tan x d x}=\operatorname{Sec} x$ General...
Mark (√) against the correct answer in the following: The general solution of the DE
is
A.
B.
C.
D. None of these
Solution: $\frac{d y}{d x}=\frac{y}{x}+\sin \frac{y}{x}$ Let $\mathrm{y}=\mathrm{vx}$ $\begin{array}{l} \mathrm{dy} / \mathrm{dx}=\mathrm{v}+\mathrm{xdv} / \mathrm{d} \mathrm{x} \\...
Mark (√) against the correct answer in the following: The general solution of the DE
is
A.
B.
C.
D. None of these
Solution: $\begin{array}{r} (x-y) d y+(x+y) d x=0 \\ \qquad \frac{d y}{d x}=\frac{x+y}{y-x} \end{array}$ Let $\mathrm{y}=\mathrm{vx}$ $\begin{array}{l} \mathrm{dy} /...
Mark (√) against the correct answer in the following: The general solution of the DE
is
A.
B.
C.
D. None of these
Solution: $\begin{array}{r} 2 \mathrm{xydy}+\left(\mathrm{x}^{2} \quad \mathrm{y}^{2}\right) \mathrm{d} \mathrm{x}=0 \\ \frac{d y}{d x}=\frac{y^{2}-x^{2}}{2 x y} \end{array}$ Let...
Mark (√) against the correct answer in the following: The general solution od the DE
is
A.
B.
C.
D. None of these
Solution: $\mathrm{x} \frac{d y}{d x}=y+x \tan \frac{y}{x}$ Dividing both sides by $x$, we get, $\frac{d y}{d x}=\frac{y}{x}+\tan \frac{y}{x}$ Let $\mathrm{y}=\mathrm{vx}$ Differentiating both...
Mark (√) against the correct answer in the following: The general solution of the DE
is.
A.
B.
C.
D. None of these
Solution: $\begin{array}{l} \mathrm{x}^{2} \frac{d y}{d x}=x^{2}+x y+y^{2} \\ \frac{d y}{d x}=1+\frac{y}{x}+\frac{y^{2}}{x^{2}} \end{array}$ Let $\mathrm{y}=\mathrm{vx}$ $\begin{array}{l}...
Mark (√) against the correct answer in the following: The general solution of the
is
A.
B.
C.
D. None of these
Solution: $\frac{d y}{d x}=\frac{y^{2}-x^{2}}{2 x y}$ Let $\mathrm{y}=\mathrm{vx}$ $\begin{array}{l} \mathrm{dy} / \mathrm{dx}=\mathrm{v}+\mathrm{xdv} / \mathrm{dx} \\ \frac{x^{2}...
Mark (√) against the correct answer in the following: The general solution of the
A.
B.
C.
D. None of these
Solution: $\begin{array}{r} \frac{\mathrm{dy}}{\mathrm{dx}}=\sqrt{1-\mathrm{x}^{2}} \sqrt{1-\mathrm{y}^{2}} \\ \frac{d y}{\sqrt{1-y^{2}}}=\sqrt{1-x^{2}} d x \end{array}$ $\operatorname{Let}...
Mark (√) against the correct answer in the following: The general solution of the DE
is
A.
B.
C.
D. None of these
Solution: $\log \left(\frac{d y}{d x}\right)=(a x+b y)$ $\begin{array}{l} \frac{d y}{d x}=e^{a x+b y} \\ \frac{d y}{e^{b y}}=e^{a x} d x \end{array}$ On integrating on both sides we get...
Mark (√) against the correct answer in the following: The general solution of the
is
A.
B.
C.
D. None of these
Solution: $\begin{array}{r} x \sqrt{1+y^{2}} \mathrm{dx}+\mathrm{y} \sqrt{1+x^{2}} \mathrm{dy}=0 \\ \frac{y d y}{\sqrt{1+y^{2}}}=\frac{-x d x}{\sqrt{1+x^{2}}} \end{array}$ Let $1+y^{2}=t$ and...
Mark (√) against the correct answer in the following: the general solution of the DE
is
A.
B.
C.
D. None of these
Solution: $\left(1+x^{2}\right) d y-x y d x=0$ $\frac{d y}{y}=\frac{x}{1+x^{2}} d x$ Let $1+\mathrm{x}^{2}=\mathrm{t}$ $\begin{array}{r} 2 \mathrm{x} \mathrm{dx}=\mathrm{dt} \\ \frac{d y}{y}=\frac{d...
Mark (√) against the correct answer in the following: The solution of the DE
is
A.
B.
C.
D. none of these
Solution: $\frac{d y}{d x}+y \log y \operatorname{Cot} x=0$ Let $\log \mathrm{y}=\mathrm{t}$ On differentiating we get $\begin{array}{l} \frac{1}{y} d y=d t \\ \frac{d t}{t}=-\operatorname{Cot} x d...
Mark (√) against the correct answer in the following: the solution of the DE
is
A.
B.
C.
D. none of these
Solution: $\begin{array}{l} x \operatorname{Cosydy}=\left(x e^{x} \log x+e^{x}\right) d x \\ \operatorname{Cosydy}=\frac{x \operatorname{exlogx}+e x}{x} d x \end{array}$ On integrating on both sides...
Mark (√) against the correct answer in the following: The solution of the
is
A.
B.
C.
D. none of these
Solution: $\cos x(1+\cos y) d x-\sin y(1+\sin x) d y=0$ Let $1+\cos y=t$ and $1+\sin x=u$ On differentiating both equations, we get $-\sin y d y=d t$ and $\cos x d x=d u$ Substitute this in the...
Mark (√) against the correct answer in the following: The solution of the
is
A.
B.
C.
D. None of these
Solution: $\begin{array}{l} \frac{d y}{d x}=\frac{-2 x y}{x^{2}+1} \\ \frac{d y}{y}=\frac{-2 x d x}{x^{2}+1} \end{array}$ Let $\mathrm{x}^{2}+1=\mathrm{t}$ On differentiating on both sides we get $2...
Mark (√) against the correct answer in the following: The solution of the
is
A.
B.
C.
D. None of these
Solution: $\begin{array}{l} \frac{d y}{d x}=\frac{1-\operatorname{Cos} x}{1+\operatorname{Cos} x} \\ \frac{d y}{d x}=\frac{2 \sin ^{2} \frac{x}{2}}{2 \cos ^{2} \frac{x}{2}}, \\ \frac{d y}{d x}=\tan...
Mark (√) against the correct answer in the following: The solution of the
is
A.
B.
C.
D. None of these
Solution: $\frac{\mathrm{dy}}{\mathrm{dx}}+\sqrt{\frac{1-\mathrm{y}^{2}}{1-\mathrm{x}^{2}}}=0$ $\frac{-d y}{\sqrt{1-y^{2}}}=\frac{d x}{\sqrt{1-x^{2}}}$ On integrating on both sides, we get $-\sin...
Mark (√) against the correct answer in the following: The solution of the
is
A.
B.
C.
D. None of these
Solution: $\begin{array}{l} \frac{d y}{d x}=e^{x+y}+x^{2} e^{y} \\ \left(e^{-y}\right) d y=\left(e^{x}+e^{2}\right) d x \end{array}$ On integrating on both sides, we get $\begin{array}{l}...
Mark (√) against the correct answer in the following: The solution of the DE
is
A.
B.
C.
D. None of these
Solution: $\begin{array}{l} \frac{d y}{d x}=1-x+y-x y \\ \frac{d y}{d x}=1-x+y(1-x) \\ \frac{d y}{d x}=(1+y)(1-x) \\ \frac{d y}{1+y}=(1-x) d x \end{array}$ On integrating on both sides, we get $\log...
Mark (√) against the correct answer in the following: The solution of the
is.
A.
B.
C.
D. None of these
Solution: $\frac{d y}{d x}=\frac{1+y^{2}}{1+x^{2}}$ On integrating on both sides, we get $\begin{array}{l} \tan ^{-1} y=\tan ^{-1} x+c \\ \frac{y-x}{1+y x}=\mathrm{c} \\...
Mark (√) against the correct answer in the following: The solution of the
is
A.
B.
C.
D. None of these
Solution: $x \frac{d y}{d x}=\cot y$ Separating the variables, we get, $\begin{array}{c} \frac{d y}{\cot y}=\frac{d x}{x} \\ \tan y d y=\frac{d x}{x} \end{array}$ Integrating both sides, we get,...
Mark (√) against the correct answer in the following: The solution of the
is
A.
B.
C.
D. None of these
Solution: $\begin{array}{l} \text { Given } x d y+y d x=0 \\ x d y=-y d x \end{array}$ $-\frac{d y}{y}=\frac{d x}{d x}$ On integrating on both sides we get, $\begin{array}{l} -\log y=\log x+c \\...
Mark (√) against the correct answer in the following: The solution of the
is
A.
B.
C.
D. None of these
Solution: $\begin{array}{l} \left(e^{x}+1\right) y d y=(y+1) e^{x} d x \\ \frac{y d y}{y+1}=\frac{e^{x} d x}{\left(e^{x}+1\right)} \end{array}$ On differentiating on both sides we get $e^{x} d x=d...
Mark (√) against the correct answer in the following: The solution of the DE
is
A.
B.
C.
D. None of these
Solution: $\begin{array}{c} \frac{d y}{d x}=e^{x+y} \\ \frac{d y}{d x}=e^{x} e^{y} \\ e^{-y} d y=e^{x} d x \end{array}$ On integrating on both sides, we get $\begin{array}{c}...
Solve
, given that when
, then
.
Solution: $\left(1+y^{2}\right) d x+\left(x-e^{-\tan ^{-1} y}\right) d y=0\dots (1)$ General solution for the differential equation in the form of $\frac{d y}{d x}+\mathrm{Py}=$ Qis given by, $y...
Find the general solution for each of the following differential equations. 
Solution: $(x+y+1) \frac{d y}{d x}=1-\ldots(1)$ General solution for the differential equation in the form of $\frac{d y}{d x}+\overline{\mathrm{Py}}=$ Qis given by, $y \cdot(I . F .)=\int Q \cdot(I...
Find the general solution for each of the following differential equations. 
Solution: $(\mathrm{x}+\mathrm{y}) \frac{d y}{d x}=1-\ldots(1)$ General solution for the differential equation in the form of $\frac{d y}{d x}+\mathrm{Py}=\mathrm{Q}$ is given by, $y \cdot\left(I ....
Find the general solution for each of the following differential equations. 
Solution: $y d x+\left(x-y^{2}\right) d y=0\dots (1)$ General solution for the differential equation in the form of $\frac{d y}{d x}+\mathrm{Py}=\mathrm{Q}$ General solution is given by, $y...
A curve passes through the point
and the sum of the coordinates of any point on the curve exceeds the magnitude of the slope of the tangent to the curve at that point by
Find the equation of the curve.
Solution: General solution for the differential equation in the form of $\frac{d y}{d x}+\mathrm{Py}=$ Qis given by, $y \cdot(I . F .)=\int Q \cdot(I . F .) d x+c$ Where, integrating factor, $I . F...
A curve passes through the origin and the slope of the tangent to the curve at any point
is equal to the sum of the coordinates of the point. Find the equation of the curve.
Solution: General solution for the differential equation in the form of $\frac{d y}{d x}+\mathrm{Py}=$ Qis given by, $y \cdot(I . F .)=\int Q \cdot(I . F .) d x+c$ Where, integrating factor, $\text...
Find a particular solution satisfying the given condition for each of the following differential equations.
, given that
when 
Solution: $\frac{d y}{d x}+\operatorname{ytan} \mathrm{x}=2 \mathrm{x}+x^{2} \tan x\dots(1)$ General solution for the differential equation in the form of $\frac{d y}{d x}+\mathrm{Py}=\mathrm{Q}$...
Find a particular solution satisfying the given condition for each of the following differential equations.
, given that
when 
Solution: $x \frac{d y}{d x}-y=\log x-\ldots(1)$ General solution for the differential equation in the form of $\frac{d y}{d x}+\mathrm{Py}=\mathrm{Q}$ is given by, $y \cdot(I . F .)=\int Q \cdot(I...
Find a particular solution satisfying the given condition for each of the following differential equations.
, given that
when 
Solution: $\left(1+x^{2}\right) \frac{d y}{d x}+2 x y=4 x^{2}-\ldots(1)$ General solution for the differential equation in the form of $\frac{d y}{d x}+\mathrm{Py}=\mathrm{Q}$ is given by, $y...
Find a particular solution satisfying the given condition for each of the following differential equations.
, given that
, when 
Solution: $\frac{d y}{d x}+2 y=e^{-2 x} \cdot \operatorname{Sin} x\dots(1)$ General solution for the differential equation in the form of $\frac{d y}{d x}+\mathrm{Py}=\mathrm{Q}$ General solution is...
Find a particular solution satisfying the given condition for each of the following differential equations.
, given that
when 
Solution: General solution for the differential equation in the form of $\frac{d y}{d x}+\mathrm{Py}=\mathrm{Q}\dots(1)$ General solution is given by, $y \cdot(I . F .)=\int Q \cdot(I . F .) d x+c$...
Find a particular solution satisfying the given condition for each of the following differential equations.
, given that
when 
Solution: $\frac{\mathrm{dy}}{\mathrm{dx}}+\mathrm{y} \cdot \operatorname{Cot} \mathrm{x}=4 \mathrm{x} \operatorname{Cosec} \mathrm{x}^{--}-\mathrm{c}-\mathrm{c}-\mathrm{c}(1)\dots (1)$ General...
Find a particular solution satisfying the given condition for each of the following differential equations.
, given that
when 
Solution: $\mathrm{x} \frac{d y}{d x}+y=x^{3}\dots(1)$ General solution for the differential equation in the form of $\frac{d y}{d x}+\mathrm{Py}=\mathrm{Q}$ is given by, $y \cdot(I . F .)=\int Q...
Find the general solution for each of the following differential equations. 
Solution: $\frac{d y}{d x}+2 y \tan x=\sin x\dots(1)$ To solve (1) we will use following formula $\int \tan x d x=\log _{\mid} \sec x \mid$ $\begin{array}{l} \operatorname{alog} \mathrm{b}=\log...
Find the general solution for each of the following differential equations. 
Solution: $\frac{d y}{d x}+y \cot x=\sin 2 x-\dots (1)$ General solution: For the differential equation in the form of $\frac{d y}{d x}+\mathrm{Py}=\mathrm{Q}$ General solution is given by, $y...
Find the general solution for each of the following differential equations. 
Solution: $\frac{d y}{d x}=\operatorname{ytan} x-2 \sin x-\ldots(1)$ General solution for the differential equation in the form of $\frac{d y}{d x}+\mathrm{Py}=\mathrm{Q}$ General solution is given...
Find the general solution for each of the following differential equations. 
Solution: $x \frac{d y}{d x}-y=2 x^{2} \sec x \dots (1)$ General solution for the differential equation in the form of $\frac{d y}{d x}+\mathrm{Py}=\mathrm{Q}$ General solution is given by, $y...
Find the general solution for each of the following differential equations. 
Solution: $\frac{d y}{d x}+2 \mathrm{y}(\cot x)=3 x^{2} \operatorname{cosec}^{2} x\dots (1)$ General solution for the differential equation in the form of $\frac{d y}{d x}+\mathrm{Py}=\mathrm{Q}$...
Find the general solution for each of the following differential equations. 
Solution: $\left(1+x^{2}\right) \frac{d y}{d x}+2 x y=\cot x-\ldots(1)$ General solution for the differential equation in the form of $\frac{d y}{d x}+\mathrm{Py}=\mathrm{Q}$ General solution is...
Find the general solution for each of the following differential equations. 
Solution: $\frac{d y}{d x}+y=\cos x-\sin x-\cdots \dots(1)$ General solution for the differential equation in the form of $\frac{d y}{d x}+P y=Q$ is given by, $y \cdot(I . F .)=\int Q \cdot(I . F .)...
Find the general solution for each of the following differential equations. 
Solution: $\frac{d y}{d x}+2 y=\sin x- \dots(1)$ General solution for the differential equation in the form of is given by, $y \cdot(I . F .)=\int Q \cdot(I . F .) d x+c$ Where, integrating factor,...
Find the general solution for each of the following differential equations. 
Solution: $x d y+\left(y-x^{3}\right) d x=0\dots (1)$ General solution for the differential equation in the form of is given by,$\frac{d y}{d x}+P y=Q$ $y \cdot(I . F .)=\int Q \cdot(I . F .) d x+c$...
Find the general solution for each of the following differential equations. 
Solution: $x d y-\left(y+2 x^{2}\right) d x=0\dots (1)$ General solution for the differential equation in the form of $\frac{d y}{d x}+P y=Q$ is given by $y \cdot(I . F .)=\int Q \cdot(I . F \cdot)...
Find the general solution for each of the following differential equations. 
Solution: $\left(\mathrm{y}+3 \mathrm{x}^{2}\right) \frac{d x}{d y}=\mathrm{x}-\cdots \dots(1)$ General solution for the differential equation in the form of is given by,$\frac{d y}{d x}+P y=Q$ $y...
Find the general solution for each of the following differential equations. 
Solution: $\frac{d y}{d x}+\frac{4 x}{x^{2}+1} y+\frac{1}{\left(1+x^{2}\right)^{2}}=0\dots (1)$ General solution for the differential equation in the form of $\frac{d y}{d x}+P y=Q$ is given by, $y...
Find the general solution for each of the following differential equations. 
Solution: $(1+x) \frac{d y}{d x}-y=e^{3 x}(1+x)^{2}\dots (1)$ General solution for the differential equation in the form of is given by $\frac{d y}{d x}+P y=Q$ $y \cdot(I . F .)=\int Q \cdot(I . F...
Find the general solution for each of the following differential equations. 
Solution: $\begin{array}{r} x \frac{d y}{d x}+2 y=x^{2} \log x-\ldots(1) \\ \qquad \frac{d(\log x)}{d x}=\frac{1}{x} \end{array}$ General solution for the differential equation in the form of...
Find the general solution for each of the following differential equations. 
Solution: $x \frac{d y}{d x}+y=x \log x\dots (1)$ To solve (1) we will use following formula $\begin{array}{l} \int \frac{1}{x} d x=\log x \\ a^{\log _{a} b=b} \\ \qquad \int u \cdot v d x=u . \int...
Find the general solution for each of the following differential equations. 
Solution: $\frac{d y}{d x}-y \tan x=e^{x} \sec x-\ldots(1)$ To solve (1) we will use following formula $\begin{array}{l} \quad \int \tan x d x=\log (\sec x) \\ a \log b=\log b^{a} \\ a^{\log _{a}...
Find the general solution for each of the following differential equations. 
Solution: Given Differential Equation : $\frac{\text { dy }}{\mathrm{dx}}+\frac{1}{\mathrm{x}} \cdot \mathrm{y}=\mathrm{x}^{2} \ldots \ldots \ldots \mathrm{eq}(1)$ Formula : i) $\int \frac{1}{x} d...
Find the general solution for each of the following differential equations. 
Solution: $\frac{d y}{d x}+8 y=5 e^{-3 x} \ldots(1)$ To solve (1) we will use following formula $\begin{array}{l} \int 1 d x=x \\ \int e^{k x} d x=\frac{e^{k x}}{k} \end{array}$ General solution for...
Find the general solution for each of the following differential equations. 
Solution: $\frac{d y}{d x}+3 y=e^{-2 x}\dots \dots(1)$ To solve (1) we will use following formula $\begin{array}{l} \int 1 d x=x \\ \int e^{k x} d x=\frac{e^{k x}}{k} \end{array}$ General solution...
Find the general solution for each of the following differential equations. 
Solution: $\frac{d y}{d x}+2 y=6 e^{x}$ To solve (1) we will use following formula $\begin{array}{l} \int 1 d x=x \\ \int e^{k x} d x=\frac{e^{k x}}{k} \end{array}$ General solution for the...
Find the general solution for each of the following differential equations. 
Solution: $\left(x^{2}+1\right) \frac{d y}{d x}-2 x y=\left(x^{2}+1\right)\left(x^{2}+2\right)^{-\ldots}-\ldots(1)$ To solve (1) we will use following formula $\begin{array}{l} \int...
Find the general solution for each of the following differential equations. 
Solution: $\left(1-x^{2}\right) \frac{d y}{d x}=x y=a x-\ldots(1)$ To solve (1) we will use following formula $\begin{array}{r} \int \frac{f^{\prime}(X)}{f(x)} d x=\log f(x)+\mathrm{C} \\ a \log...
Find the general solution for each of the following differential equations. 
Solution: $\left(1-x^{2}\right) \frac{d y}{d x}+x y=x \sqrt{1-x^{2}}\dots \dots (1)$ To solve (1) we will use following formula $\begin{array}{l} \int \frac{f^{\prime}(x)}{f(x)} d x=\log f(x) \\...
Find the general solution for each of the following differential equations. 
Solution: $\left(1+x^{2}\right) \frac{d y}{d x}+2 x y=\frac{1}{\left(1+x^{2}\right)}\dots \dots(1)$ To solve (1) we will use following formula $\begin{array}{l} \int \frac{f^{\prime}(x)}{f(x)} d...
Find the general solution for each of the following differential equations. 
Solution: $x \frac{d y}{d x}-y=x+1\dots \dots (1)$ To solve (1) we will use following formula $\begin{array}{l} \int \frac{1}{x} d x=\log x \\ \int x^{n} d x=\frac{x^{n+1}}{n+1}+c \\ a \log b=\log...
Find the general solution for each of the following differential equations. 
Solution: $x \frac{d y}{d x}-y+2 x^{3}\dots \dots(1)$ To solve (1) we will use following formula $\begin{array}{c} \int \frac{1}{x} d x=\log x \\ a \log b=\log b^{a} \end{array}$ $a^{\log _{a}...
Find the general solution for each of the following differential equations. 
Solution: $x \frac{d y}{d x}+y=3 x^{2}-3\dots \dots (1)$ To solve (1) we will use following formula $\begin{array}{l} \int \frac{1}{x} d x=\log x \\ a^{\log _{a} b}=\log b \end{array}$ General...
Find the general solution for each of the following differential equations. 
Solution: To solve the given equation we will use following formula $\begin{array}{l} \int \frac{1}{x} d x=\log \mathrm{x}+\mathrm{C} \\ \int x^{n} d x=\frac{x^{n+1}}{n+1}+\mathrm{c} \\ a \log...
Find the general solution for each of the following differential equations. 
Solution: $x \frac{d y}{d x}+2 y=x^{2}\dots \dots (1)$ To solve (1) we will use following formula $\begin{array}{l} \int \frac{1}{x} d x=\log x \\ \int x^{n} d x=\frac{x^{n}+1}{n+1}+c \\ a^{\log...
Find the general solution for each of the following differential equations. 
Solution: Given Differential Equation : $\frac{\text { dy }}{\mathrm{dx}}+\frac{1}{\mathrm{x}} \cdot \mathrm{y}=\mathrm{x}^{2} \ldots \ldots \ldots \mathrm{eq}(1)$ Formula : i) $\int \frac{1}{x} d...
If the matrix A is both symmetric and skew-symmetric, show that A is a zero matrix.
Solution: The transpose of the matrix is an operation of making interchange of elements by the rule on positioned element $a_{j i}$ shifted to new position $a_{j i}$. The symmetric matrix is defined...
If
and
, find
.
Solution: We have $A=\left(\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right)$. Now addition/subtraction of two matrices is possible if order of both the matrices are same and multiplication...
If A and B are symmetric matrices of the same order, show that (AB – BA) is a skew symmetric matrix.
Solution: We have $A$ and $B$ are symmetric matrices. Therefore $A^{T}=A$ and $B^{T}=B$ The transpose of the matrix is an operation of making interchange of elements by the rule on positioned...
If
, show that
.
Solution: We have $A=\left(\begin{array}{cc}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right)$. The transpose of the matrix is an operation of making interchange of...
If
and
, find a matrix
such that 
Solution: We have $A=\left(\begin{array}{ll}4 & 2 \\ 1 & 3\end{array}\right), B=\left(\begin{array}{cc}-2 & 1 \\ 3 & 2\end{array}\right)$ and $3 A-2 B+X=0$ We can have the addition...
If
and
, find a matrix
such that
.
Solution: We have $A=\left(\begin{array}{cc}2 & -3 \\ 4 & 5\end{array}\right), B=\left(\begin{array}{cc}-1 & 2 \\ 0 & 3\end{array}\right)$ and $A+2 B+X=0$. We can have the addition...
If
, show that
is symmetric
Solution: We have $\left(\begin{array}{ll}4 & 5 \\ 1 & 8\end{array}\right)$. The transpose of the matrix is an operation of making interchange of elements by the rule on positioned element...
Find the value of
and
for which ![Rendered by QuickLaTeX.com \left[\begin{array}{cc} \mathrm{x} & \mathrm{y} \\ 3 \mathrm{y} & \mathrm{x} \end{array}\right]\left[\begin{array}{l} 1 \\ 2 \end{array}\right]=\left[\begin{array}{l} 3 \\ 5 \end{array}\right]](https://www.learnatnoon.com/s/wp-content/ql-cache/quicklatex.com-0863b7d782cc25f6aa50594877777cc3_l3.png)
Solution: We have $\left(\begin{array}{cc}x & y \\ 3 y & x\end{array}\right)\left(\begin{array}{l}1 \\ 2\end{array}\right)=\left(\begin{array}{l}3 \\ 5\end{array}\right)$. Use the...
Find the value of
and
for which ![Rendered by QuickLaTeX.com \left[\begin{array}{cc} 2 & -3 \\ 1 & 1 \end{array}\right]\left[\begin{array}{l} \mathrm{x} \\ \mathrm{y} \end{array}\right]=\left[\begin{array}{l} 1 \\ 3 \end{array}\right]](https://www.learnatnoon.com/s/wp-content/ql-cache/quicklatex.com-4bea77a5649bdf186a1bac7467012af0_l3.png)
Solution: We have $\left(\begin{array}{cc}2 & -3 \\ 1 & 1\end{array}\right)\left(\begin{array}{l}x \\ y\end{array}\right)=\left(\begin{array}{l}1 \\ 3\end{array}\right)$. Use the...
If
then find the least value of
for which
.
Solution: We have $A=\left(\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right)$ Use the addition rule and get $A+A^{T}=I_{2}$ as follow:...
If
and
, find the matrix
such that
is a zero matrix
Solution: We have $A=\left(\begin{array}{cc}1 & -5 \\ -3 & 2 \\ 4 & -2\end{array}\right) ; B=\left(\begin{array}{cc}3 & 1 \\ 2 & -1 \\ -2 & 3\end{array}\right) .$ and...
Show that
![Rendered by QuickLaTeX.com \begin{array}{l} \cos \theta \cdot\left[\begin{array}{cc} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{array}\right]+\sin \theta \\ {\left[\begin{array}{cc} \sin \theta & -\cos \theta \\ \cos \theta & \sin \theta \end{array}\right]=I} \end{array}](https://www.learnatnoon.com/s/wp-content/ql-cache/quicklatex.com-9f6e84acdf2d6d135e00de04b3a005f2_l3.png)
Solution: We have $\cos \theta\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)+\sin \theta\left(\begin{array}{cc}\sin \theta & -\cos...
If A = diag (3 -2, 5) and B = diag (1 3 -4), find (A + B).
Solution: We have $A=\operatorname{diag}(3-25)=\left(\begin{array}{ccc}3 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 5\end{array}\right) ; B=$...
If
, find the values of 
Solution: We have $\left(\begin{array}{cc}x & 6 \\ -1 & 2 w\end{array}\right)+\left(\begin{array}{cc}4 & x+y \\ z+w & 3\end{array}\right)=3\left(\begin{array}{cc}x & y \\ z &...
If
, find the values of
.
Solution: We have $\left(\begin{array}{cc}x & 3 x-y \\ 2 x+z & 3 y-w\end{array}\right)=\left(\begin{array}{ll}3 & 2 \\ 4 & 7\end{array}\right)$. Now from the equality of matrices we...
If
, find the values of
and
.
Solution: We have $x\left(\begin{array}{l}2 \\ 3\end{array}\right)+y\left(\begin{array}{c}-1 \\ 1\end{array}\right)=\left(\begin{array}{c}10 \\ 5\end{array}\right)$. Use the addition rule and get...
Find the values of
and
, if ![Rendered by QuickLaTeX.com 2\left[\begin{array}{ll} 1 & 3 \\ 0 & x \end{array}\right]+\left[\begin{array}{ll} y & 0 \\ 1 & 2 \end{array}\right]=\left[\begin{array}{ll} 5 & 6 \\ 1 & 8 \end{array}\right]](https://www.learnatnoon.com/s/wp-content/ql-cache/quicklatex.com-e3b199653bed94af618cb5f0d4f0ec35_l3.png)
Solution: We have $2\left(\begin{array}{ll}1 & 3 \\ 0 & x\end{array}\right)+\left(\begin{array}{ll}y & 0 \\ 1 & 2\end{array}\right)=\left(\begin{array}{ll}5 & 6 \\ 1 &...
If
, find the values of
and 
Solution: We have $\left(\begin{array}{cc}x+2 y & -y \\ 3 x & 4\end{array}\right)=\left(\begin{array}{cc}-4 & 3 \\ 6 & 4\end{array}\right)$ Now from the equality of matrices we can...
Construct a
matrix whose elements are given by 
Solution: We have $a_{i j}=\frac{1}{2}|-3 i+j|^{2}$ Now $\begin{array}{l} a_{11}=\frac{|-3(1)+1|}{2}=1, a_{12}=\frac{|-3(1)+2|}{2}=\frac{9}{2}, a_{13}=\frac{|-3(1)+3|}{2}=\frac{9}{2} \\...
Construct a
matrix whose elements are given by 
Solution: We have $a_{i j}=\frac{1}{2}(i-2 j)^{2}$ Now $\begin{array}{l} a_{11}=\frac{(1-2(1))^{2}}{2}=\frac{1}{2}, a_{12}=\frac{(1-2(2))^{2}}{2}=\frac{9}{2} \\ a_{21}=\frac{(2-2(1))^{2}}{2}=0...
Using elementary row transformations, find the inverse of each of the following matrices: ![Rendered by QuickLaTeX.com \left[\begin{array}{ccc} -1 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{array}\right]](https://www.learnatnoon.com/s/wp-content/ql-cache/quicklatex.com-f03cb7f5858669bd60950918832693a7_l3.png)
Solution: We have $A=\left(\begin{array}{ccc}-1 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{array}\right)$ To get the inverse we will proceed by augmented matrix with elementary...
Using elementary row transformations, find the inverse of each of the following matrices: ![Rendered by QuickLaTeX.com \left[\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 5 & 7 \\ -2 & -4 & -5 \end{array}\right]](https://www.learnatnoon.com/s/wp-content/ql-cache/quicklatex.com-9b986c3bb2233699ef7411fc62105e4b_l3.png)
Solution: We have $A=\left(\begin{array}{ccc}1 & 2 & 3 \\ 2 & 5 & 7 \\ -2 & -4 & -5\end{array}\right)$. To get the inverse we will proceed by augmented matrix with elementary...
Using elementary row transformations, find the inverse of each of the following matrices: ![Rendered by QuickLaTeX.com \left[\begin{array}{ccc} 3 & -1 & -2 \\ 2 & 0 & -1 \\ 3 & -5 & 0 \end{array}\right]](https://www.learnatnoon.com/s/wp-content/ql-cache/quicklatex.com-6f98ac5a8bdc0a4c68b59ad5fff13f27_l3.png)
Solution: We have $A=\left(\begin{array}{ccc}3 & -1 & -2 \\ 2 & 0 & -1 \\ 3 & -5 & 0\end{array}\right)$ To get the inverse we will proceed by augmented matrix with elementary...
Using elementary row transformations, find the inverse of each of the following matrices: ![Rendered by QuickLaTeX.com \left[\begin{array}{lll} 3 & 0 & 2 \\ 1 & 5 & 9 \\ 6 & 4 & 7 \end{array}\right]](https://www.learnatnoon.com/s/wp-content/ql-cache/quicklatex.com-c2d4be16f7e50993b9d9ddb636e32da5_l3.png)
Solution: We have $A=\left(\begin{array}{lll}3 & 0 & 2 \\ 1 & 5 & 9 \\ 6 & 4 & 7\end{array}\right)$ To get the inverse we will proceed by augmented matrix with elementary row...
Using elementary row transformations, find the inverse of each of the following matrices: ![Rendered by QuickLaTeX.com \left[\begin{array}{ccc} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{array}\right]](https://www.learnatnoon.com/s/wp-content/ql-cache/quicklatex.com-9e97cd7932741e795ff74dfcc62f2080_l3.png)
Solution: We have $A=\left(\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{array}\right)$ To get the inverse we will proceed by augmented matrix with elementary row...
Using elementary row transformations, find the inverse of each of the following matrices: ![Rendered by QuickLaTeX.com \left[\begin{array}{ll} 4 & 0 \\ 2 & 5 \end{array}\right]](https://www.learnatnoon.com/s/wp-content/ql-cache/quicklatex.com-00e067d8b3d687152537a9d78c193c7f_l3.png)
Solution: We have $A=\left(\begin{array}{ll}4 & 0 \\ 2 & 5\end{array}\right)$. To get the inverse we will proceed by augmented matrix with elementary row transformation process is as follow:...
Using elementary row transformations, find the inverse of each of the following matrices: ![Rendered by QuickLaTeX.com \left[\begin{array}{cc} 2 & -3 \\ 4 & 5 \end{array}\right]](https://www.learnatnoon.com/s/wp-content/ql-cache/quicklatex.com-6d086db9247d6fa2dd93801088be8f5f_l3.png)
Solution: We have $A=\left(\begin{array}{cc}2 & -3 \\ 4 & 5\end{array}\right)$ To get the inverse we will proceed by augmented matrix with elementary row transformation process is as follow:...
Using elementary row transformations, find the inverse of each of the following matrices: ![Rendered by QuickLaTeX.com \left[\begin{array}{rr} 2 & 5 \\ -3 & 1 \end{array}\right]](https://www.learnatnoon.com/s/wp-content/ql-cache/quicklatex.com-4e7a3750c7e99f5875f5fe5e581bc3bc_l3.png)
Solution: We have $A=\left(\begin{array}{cc}2 & 5 \\ -3 & 1\end{array}\right)$ To get the inverse we will proceed by augmented matrix with elementary row transformation process is as follow:...
Using elementary row transformations, find the inverse of each of the following matrices: ![Rendered by QuickLaTeX.com \left[\begin{array}{cc} 1 & 2 \\ 2 & -1 \end{array}\right]](https://www.learnatnoon.com/s/wp-content/ql-cache/quicklatex.com-918a8e2a33fbf14a8141e6d365aa3df9_l3.png)
Solution: We have $A=\left(\begin{array}{cc}1 & 2 \\ 2 & -1\end{array}\right)$ To get the inverse we will proceed by augmented matrix with elementary row transformation process is as follow:...
Using elementary row transformations, find the inverse of each of the following matrices: ![Rendered by QuickLaTeX.com \left[\begin{array}{ll} 1 & 2 \\ 3 & 7 \end{array}\right]](https://www.learnatnoon.com/s/wp-content/ql-cache/quicklatex.com-6a1968e1a662e8c4373a2fec80dd99d1_l3.png)
Solution: We have $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 7\end{array}\right)$ To get the inverse we will proceed by augmented matrix with elementary row transformation process is as follow:...
If
, show that
.
Solution: Given that $A=\left[\begin{array}{cc}\cos \alpha & \sin \alpha \\ -\sin \theta & \cos \alpha\end{array}\right]$. We wil find $A$ $A^{\prime}=\left[\begin{array}{cc}\cos \alpha...
For each of the following pairs of matrices
and
, verify that
:
and ![Rendered by QuickLaTeX.com B=\left[\begin{array}{cc}3 & -4 \\ 2 & 1 \\ -1 & 0\end{array}\right]](https://www.learnatnoon.com/s/wp-content/ql-cache/quicklatex.com-d5b55b58779f0457b2c521b7bc825595_l3.png)
Solution: Take $\mathrm{C}=\mathrm{AB}$ $\begin{array}{l} C=\left[\begin{array}{ccc} -1 & 2 & -3 \\ 4 & -5 & 6 \end{array}\right]\left[\begin{array}{cc} 3 & -4 \\ 2 & 1 \\ -1...
For each of the following pairs of matrices
and
, verify that
: ![Rendered by QuickLaTeX.com \mathrm{A}=\left[\begin{array}{c} -1 \\ 2 \\ 3 \end{array}\right] \text { and } \mathrm{B}=[-2 \cdot 1-4]](https://www.learnatnoon.com/s/wp-content/ql-cache/quicklatex.com-86cfd44f3d05fdc26f7ec6f9a464ad20_l3.png)
Solution: Take $C=A B$ $\begin{array}{l} C=\left[\begin{array}{c} -1 \\ 2 \\ 3 \end{array}\right]\left[\begin{array}{lll} -2 & -1 & -4 \end{array}\right] \\...
For each of the following pairs of matrices
and
, verify that
: ![Rendered by QuickLaTeX.com A=\left[\begin{array}{rr} 3 & -1 \\ 2 & -2 \end{array}\right] \text { and } B=\left[\begin{array}{rr} 1 & -3 \\ 2 & -1 \end{array}\right]](https://www.learnatnoon.com/s/wp-content/ql-cache/quicklatex.com-3f4483ea07db74116ba0bc5d55287e5b_l3.png)
Solution: Take $C=A B$ $\begin{array}{l} C=\left[\begin{array}{rr} 3 & -1 \\ 2 & -2 \end{array}\right]\left[\begin{array}{ll} 1 & -3 \\ 2 & -1 \end{array}\right] \\...
For each of the following pairs of matrices
and
, verify that
: ![Rendered by QuickLaTeX.com A=\left[\begin{array}{ll} 1 & 3 \\ 2 & 4 \end{array}\right] \text { and } B=\left[\begin{array}{ll} 1 & 4 \\ 2 & 5 \end{array}\right]](https://www.learnatnoon.com/s/wp-content/ql-cache/quicklatex.com-c3667d21de9c5134248177485655ffeb_l3.png)
Solution: Take $\mathrm{C}=\mathrm{A} 8$ $\begin{array}{l} C=\left[\begin{array}{ll} 1 & 3 \\ 2 & 4 \end{array}\right]\left[\begin{array}{ll} 1 & 4 \\ 2 & 5 \end{array}\right] \\...
Express the matrix
as sum af two matrices such that and is symmetric and the other is skew-symmetric.
Solution: Given that $A=\left[\begin{array}{lll}3 & 2 & 5 \\ 4 & 1 & 3 \\ 0 & 6 & 7\end{array}\right]$, to express as sum of symmetric matrix $P$ and skew symmetric matrix...
Express the matrix
as the sum of a symmetric matrix and a skew-symmetric matrix.
Solution: Given that $\mathrm{A}=\left[\begin{array}{rr}3 & -4 \\ 1 & -1\end{array}\right]$,to express as the sum of symmetric matrix $\mathrm{P}$ and skew symmetric matrix Q. $A=P+Q$ Where...
Express the matrix
as the sum of a symmetric matrix and a skew-symmetric matrix.
Solution: Given that $A=\left[\begin{array}{cc}2 & 3 \\ -1 & 4\end{array}\right]$, As for a symmetric matrix $A^{\prime}=A$ hence $\begin{array}{l} A+A^{\prime}=2 A \\...
Show that the matrix
is skew-symmetric.
Solution: We have $A=\left(\begin{array}{ccc}0 & a & b \\ -a & 0 & c \\ -b & -c & 0\end{array}\right)$. The transpose of the matrix is an operation of making interchange of...
If
, show that
is skew-symmetric.
Solution: We have $A=\left(\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right)$ The transpose of the matrix is an operation of making interchange of elements by the rule on positioned...
If
, show that
is symmetric.
Solution: We have $A=\left(\begin{array}{ll}4 & 1 \\ 5 & 8\end{array}\right)$. The transpose of the matrix is an operation of making interchange of elements by the rule on positioned element...
If
and
, verify that 
Solution: We have $P=\left(\begin{array}{cc}3 & 4 \\ 2 & -1 \\ 0 & 5\end{array}\right)$ and $Q=\left(\begin{array}{cc}7 & -5 \\ -4 & 0 \\ 2 & 6\end{array}\right)$. The...
If
and
, verify that
.
Solution: We have $A=\left(\begin{array}{ccc}3 & 2 & -1 \\ -5 & 0 & -6\end{array}\right)$ and $B=\left(\begin{array}{ccc}-4 & -5 & -2 \\ 3 & 1 & 8\end{array}\right)$....
If
, verify that
.
Solution: We have $A=\left(\begin{array}{ccc}2 & -3 & 5 \\ 0 & 7 & -4\end{array}\right)$. The transpose of the matrix is an operation of making interchange of elements by the rule on...
If
, find the value of 
Solution: We have $A=\left(\begin{array}{ll}2 & 3 \\ 5 & 7\end{array}\right), B=\left(\begin{array}{cc}1 & -3 \\ -2 & 4\end{array}\right)$ and $C=\left(\begin{array}{cc}-4 & 6 \\...
If
and
, find
.
Solution: We have $A=\left(\begin{array}{cc}1 & 0 \\ -1 & 7\end{array}\right), B=\left(\begin{array}{cc}0 & 4 \\ -1 & 7\end{array}\right)$. (i) Let's compute first $A^{2}$ $A^{2}=A...
Give an example of three matrices A, B, C such that AB = AC but B ≠ C.
Solution: We have $\boldsymbol{A B}=\boldsymbol{A} \boldsymbol{C}$ but $\boldsymbol{B} \neq \boldsymbol{C}$. WE need to find: $\boldsymbol{A}, \boldsymbol{B}$. Let's take...
Given an example of two matrices A and B such that A ≠ O, B ≠ O, AB = O and BA ≠ O.
Solution: We have $\boldsymbol{A} \neq \boldsymbol{O}, \boldsymbol{B} \neq \boldsymbol{O}, \boldsymbol{A B}=\boldsymbol{O}$ and $\boldsymbol{B A} \neq \boldsymbol{O}$. We need to find:...
If
, find
, where
.
Solution: We have $A=\left(\begin{array}{cc}3 & 4 \\ -4 & -3\end{array}\right)$ and equation $f(x)=x^{2}-5 x+7$. (i) Let us compute first $A^{2}$ $A^{2}=A A=\left(\begin{array}{cc} 3 & 4...
Find the values of
and
for which ![Rendered by QuickLaTeX.com \left[\begin{array}{cc} a & b \\ -a & 2 b \end{array}\right]\left[\begin{array}{c} 2 \\ -1 \end{array}\right]=\left[\begin{array}{l} 5 \\ 4 \end{array}\right]](https://www.learnatnoon.com/s/wp-content/ql-cache/quicklatex.com-54ffd2f53dfe0a81dce111e7e3dda667_l3.png)
Solution: We have $\boldsymbol{A}=\left(\begin{array}{cc}\boldsymbol{a} & \boldsymbol{b} \\ -\boldsymbol{a} & \boldsymbol{2} \boldsymbol{b}\end{array}\right),...
If
, find 
Solution: We have $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 3 & 2 & 5\end{array}\right), B=\left(\begin{array}{lll}1 & x & 1\end{array}\right)$ and...
If
, show that ![Rendered by QuickLaTeX.com A^{2}=\left[\begin{array}{cc}\cos 2 \alpha & \sin 2 \alpha \\ -\sin 2 \alpha & \cos 2 \alpha\end{array}\right]](https://www.learnatnoon.com/s/wp-content/ql-cache/quicklatex.com-004ae2a0cb0effd2df50d6aef24065f4_l3.png)
Solution: We have $A=\left(\begin{array}{cc}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right)$ and to show $A^{2}=$ $\left(\begin{array}{cc}\cos ^2 \alpha & \sin...
If
, show that 
Solution: We have $\boldsymbol{F}(\boldsymbol{X})=\left(\begin{array}{ccc}\cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1\end{array}\right)$ and to show...
Find the matrix A such that A.
.
Solution: We have $\boldsymbol{B}=\left(\begin{array}{ll}\mathbf{2} & \mathbf{3} \\ \mathbf{4} & \mathbf{5}\end{array}\right)$ and $\boldsymbol{C}=\left(\begin{array}{cc}\mathbf{0} &...
If
, find the value of a and
such that 
Solution: We have $\boldsymbol{A}=\left(\begin{array}{ll}\mathbf{3} & \mathbf{2} \\ \mathbf{1} & \mathbf{1}\end{array}\right)$. To find $\boldsymbol{a}, \boldsymbol{b}$ such that...
If
, find
and
such that
.
Solution: We have $\boldsymbol{A}=\left(\begin{array}{ll}\mathbf{3} & \mathbf{1} \\ \mathbf{7} & \mathbf{5}\end{array}\right)$. To find $\boldsymbol{x}, \boldsymbol{y}$ such that...
Find the values of
and
, when ![Rendered by QuickLaTeX.com \left[\begin{array}{cc} 2 & -3 \\ 1 & 1 \end{array}\right]\left[\begin{array}{l} \mathrm{x} \\ \mathrm{y} \end{array}\right]=\left[\begin{array}{l} 1 \\ 3 \end{array}\right]](https://www.learnatnoon.com/s/wp-content/ql-cache/quicklatex.com-4bea77a5649bdf186a1bac7467012af0_l3.png)
Solution: We have $A=\left(\begin{array}{cc}2 & -3 \\ 1 & 1\end{array}\right), B=\left(\begin{array}{l}1 \\ 3\end{array}\right)$ and $X=\left(\begin{array}{l}x \\ y\end{array}\right)$. To...
If
, find
, where 
Solution: We have $\boldsymbol{A}=\left(\begin{array}{cc}-1 & 2 \\ 3 & 1\end{array}\right)$. Now addition/subtraction of two matrices is possible if order of both the matrices are same and...
If
, find
so that
.
Solution: We have $\boldsymbol{A}=\left(\begin{array}{ll}\mathbf{3} & -\mathbf{2} \\ \mathbf{4} & -\mathbf{2}\end{array}\right)$. Now addition/subtraction of two matrices is possible if...
Show that the matrix
satisfies the equation
.
Solution: We have $\boldsymbol{A}=\left(\begin{array}{ll}\mathbf{2} & \mathbf{3} \\ \mathbf{1} & \mathbf{2}\end{array}\right)$. Now addition of two matrices is possible if order of both the...
If
, show that
.
Solution: We have $\boldsymbol{A}=\left(\begin{array}{cc}\mathbf{3} & \mathbf{1} \\ -\mathbf{1} & \mathbf{2}\end{array}\right)$. Now addition of two matrices is possible if order of both the...
If
then find 
Solution: We have $\boldsymbol{A}=\left(\begin{array}{cc}\mathbf{2} & \mathbf{- 2} \\ -\mathbf{3} & \mathbf{4}\end{array}\right)$. Now addition of two matrices is possible if order of both...
If
and
, find
.
Solution: We have $\boldsymbol{A}=\left(\begin{array}{cc}\mathbf{2} & \mathbf{- 1} \\ \mathbf{3} & \mathbf{2}\end{array}\right)$ and $\boldsymbol{B}=\left(\begin{array}{cc}\mathbf{0} &...
If
, show that 
Solution: We have $\boldsymbol{A}=\left(\begin{array}{ccc}\mathbf{4} & -\mathbf{1} & -\mathbf{4} \\ \mathbf{3} & \mathbf{0} & -\mathbf{4} \\ \mathbf{3} & -\mathbf{1} &...
If
, show that 
Solution: We have $\boldsymbol{A}=\left(\begin{array}{ccc}\mathbf{2} & \mathbf{- 2} & -\mathbf{4} \\ \mathbf{- 1} & \mathbf{3} & \mathbf{4} \\ \mathbf{1} & -\mathbf{2} &...
Verify that
, when ![Rendered by QuickLaTeX.com \mathrm{A}=\left[\begin{array}{ll} 1 & 2 \\ 3 & 4 \end{array}\right], \mathrm{B}=\left[\begin{array}{cc} 2 & 0 \\ 1 & -3 \end{array}\right] \text { and } \mathrm{C}=\left[\begin{array}{cc} 1 & -1 \\ 0 & 1 \end{array}\right]](https://www.learnatnoon.com/s/wp-content/ql-cache/quicklatex.com-65c5d9f1c3d09f9b98677f8ffcad25dc_l3.png)
Solution: We have $\boldsymbol{A}=\left(\begin{array}{ll}\mathbf{1} & \mathbf{2} \\ \mathbf{3} & \mathbf{4}\end{array}\right), \boldsymbol{B}=\left(\begin{array}{cc}\mathbf{2} &...
For the following matrices, verify that
: ![Rendered by QuickLaTeX.com \mathrm{A}=\left[\begin{array}{ccc} 2 & 3 & -1 \\ 3 & 0 & 2 \end{array}\right], \mathrm{B}=\left[\begin{array}{l} 1 \\ 1 \\ 2 \end{array}\right] \text { and } \mathrm{C}=\left[\begin{array}{ll} 1 & -2 \end{array}\right]](https://www.learnatnoon.com/s/wp-content/ql-cache/quicklatex.com-f267062030e6a4b1a9e0ae96655b75b9_l3.png)
Solution: We have $\boldsymbol{A}=\left(\begin{array}{ccc}\mathbf{2} & \mathbf{3} & \mathbf{- 1} \\ \mathbf{3} & \mathbf{0} & \mathbf{2}\end{array}\right),...
For the following matrices, verify that
: ![Rendered by QuickLaTeX.com \mathrm{A}=\left[\begin{array}{lll} 1 & 2 & 5 \\ 0 & 1 & 3 \end{array}\right], \mathrm{B}=\left[\begin{array}{lll} 2 & 3 & 0 \\ 1 & 0 & 4 \\ 1 & -1 & 2 \end{array}\right] \text { and } \mathrm{C}=\left[\begin{array}{l} 1 \\ 4 \\ 5 \end{array}\right]](https://www.learnatnoon.com/s/wp-content/ql-cache/quicklatex.com-28076805d7b71c6daa66bcab8ce41845_l3.png)
Solution: We have $A=\left(\begin{array}{lll}1 & 2 & 5 \\ 0 & 1 & 3\end{array}\right), B=\left(\begin{array}{ccc}2 & 3 & 0 \\ 1 & 0 & 4 \\ 1 & -1 &...
If
and
. show that
is a zero matrix.
Solution: We have $\boldsymbol{A}=\left(\begin{array}{ccc}\mathbf{0} & \boldsymbol{c} & -\boldsymbol{b} \\ -\boldsymbol{c} & \mathbf{0} & \boldsymbol{a} \\ \boldsymbol{b} &...
Show that
in each of the following cases: ![Rendered by QuickLaTeX.com A=\left[\begin{array}{ccc} 1 & 3 & -1 \\ 2 & 2 & -1 \\ 3 & 0 & -1 \end{array}\right] \text { and } B=\left[\begin{array}{ccc} -2 & 3 & -1 \\ -1 & 2 & -1 \\ -6 & 9 & -4 \end{array}\right]](https://www.learnatnoon.com/s/wp-content/ql-cache/quicklatex.com-7a2b2d708af06466b10968e7314747a5_l3.png)
Solution: We have $\boldsymbol{A}=\left(\begin{array}{ccc}\mathbf{1} & \mathbf{3} & -\mathbf{1} \\ \mathbf{2} & \mathbf{2} & -\mathbf{1} \\ \mathbf{3} & \mathbf{0} &...
Show that
in each of the following cases: ![Rendered by QuickLaTeX.com \mathrm{A}=\left[\begin{array}{lll} 1 & 2 & 1 \\ 3 & 4 & 2 \\ 1 & 3 & 2 \end{array}\right] \text { and } \mathrm{B}=\left[\begin{array}{ccc} 10 & -4 & -1 \\ -11 & 5 & 0 \\ 9 & -5 & 1 \end{array}\right]](https://www.learnatnoon.com/s/wp-content/ql-cache/quicklatex.com-f2cf553262923f440cdb2486ff51fdb6_l3.png)
Solution: We have $A=\left(\begin{array}{lll}1 & 2 & 1 \\ 3 & 4 & 2 \\ 1 & 3 & 2\end{array}\right)$ and $B=\left(\begin{array}{ccc}10 & -4 & -1 \\ -11 & 5 & 0...
Show that
in each of the following cases: ![Rendered by QuickLaTeX.com A=\left[\begin{array}{cc} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{array}\right] \text { and } B=\left[\begin{array}{cc} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{array}\right]](https://www.learnatnoon.com/s/wp-content/ql-cache/quicklatex.com-de32b04501d491874e21effd827b2a59_l3.png)
Solution: We have $A=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$ and $B=\left(\begin{array}{cc}\cos \phi & -\sin \phi \\ \sin \phi...
Show that
in each of the following cases: ![Rendered by QuickLaTeX.com \mathrm{A}=\left[\begin{array}{lll} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{array}\right] \text { and } \mathrm{B}=\left[\begin{array}{ccc} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 2 & 3 & 4 \end{array}\right]](https://www.learnatnoon.com/s/wp-content/ql-cache/quicklatex.com-4ffeaf0e1df4be603ccf10fb6d6f40b6_l3.png)
Solution: We have $\boldsymbol{A}=\left(\begin{array}{lll}\mathbf{1} & \mathbf{2} & \mathbf{3} \\ \mathbf{0} & \mathbf{1} & \mathbf{0} \\ \mathbf{1} & \mathbf{1} &...
Show that
in each of the following cases : ![Rendered by QuickLaTeX.com A=\left[\begin{array}{cc} 5 & -1 \\ 6 & 7 \end{array}\right] \text { and } B=\left[\begin{array}{ll} 2 & 1 \\ 3 & 4 \end{array}\right]](https://www.learnatnoon.com/s/wp-content/ql-cache/quicklatex.com-7f5c45bafaa8a499f178625171ba32fc_l3.png)
Solution: We have $\boldsymbol{A}=\left(\begin{array}{cc}\mathbf{5} & -\mathbf{1} \\ \mathbf{6} & \mathbf{7}\end{array}\right)$ and $\boldsymbol{B}=\left(\begin{array}{ll}\mathbf{2} &...
Compute
and
, which ever exists when ![Rendered by QuickLaTeX.com A=\left[\begin{array}{cc} 2 & 1 \\ 3 & 2 \\ -1 & 1 \end{array}\right] \text { and } B=\left[\begin{array}{rrr} 1 & 0 & 1 \\ -1 & 2 & 1 \end{array}\right]](https://www.learnatnoon.com/s/wp-content/ql-cache/quicklatex.com-279e1d695b832080e5f60bbaf01191b3_l3.png)
Solution: We have $\boldsymbol{B}=\left(\begin{array}{ccc}\mathbf{1} & \mathbf{0} & \mathbf{1} \\ -\mathbf{1} & \mathbf{2} & \mathbf{1}\end{array}\right)$ and...
Compute
and BA, which ever exists when ![Rendered by QuickLaTeX.com A=\left[\begin{array}{lll} 1 & 2 & 3 & 4 \end{array}\right] \text { and } B=\left[\begin{array}{l} 1 \\ 2 \\ 3 \\ 4 \end{array}\right]](https://www.learnatnoon.com/s/wp-content/ql-cache/quicklatex.com-dd6c4ca0935c74e87d91cc74e4077943_l3.png)
Solution: We have $\boldsymbol{A}=\left(\begin{array}{llll}\mathbf{1} & 2 & 3 & 4\end{array}\right)$ and $\boldsymbol{B}=\left(\begin{array}{l}\mathbf{1} \\ \mathbf{2} \\ \mathbf{3} \\...
Compute AB and BA, which ever exists when ![Rendered by QuickLaTeX.com \mathrm{A}=\left[\begin{array}{rrr} 0 & 1 & -5 \\ 2 & 4 & 0 \end{array}\right] \text { and } \mathrm{B}=\left[\begin{array}{cc} 1 & 3 \\ -1 & 0 \\ 0 & 5 \end{array}\right]](https://www.learnatnoon.com/s/wp-content/ql-cache/quicklatex.com-02b69ceb338bd244cfc287cc78e2993a_l3.png)
Solution: We have $\boldsymbol{A}=\left(\begin{array}{ccc}\mathbf{0} & \mathbf{1} & -\mathbf{5} \\ \mathbf{2} & \mathbf{4} & \mathbf{0}\end{array}\right)$ and...
Compute AB and BA, which ever exists when ![Rendered by QuickLaTeX.com \mathrm{A}=\left[\begin{array}{cc} -1 & 1 \\ -2 & 2 \\ -3 & 3 \end{array}\right] \text { and } \mathrm{B}=\left[\begin{array}{ccc} 3 & -2 & 1 \\ 0 & 1 & 2 \\ -3 & 4 & -5 \end{array}\right]](https://www.learnatnoon.com/s/wp-content/ql-cache/quicklatex.com-499601ef9942d093f177dcd042e96b76_l3.png)
Solution: We have $\boldsymbol{A}=\left(\begin{array}{cc}-\mathbf{1} & \mathbf{1} \\ -\mathbf{2} & \mathbf{2} \\ -\mathbf{3} & \mathbf{3}\end{array}\right)$ and...
Compute AB and BA, which ever exists when ![Rendered by QuickLaTeX.com A=\left[\begin{array}{cc} 2 & -1 \\ 3 & 0 \\ -1 & 4 \end{array}\right] \text { and } B=\left[\begin{array}{cc} -2 & 3 \\ 0 & 4 \end{array}\right]](https://www.learnatnoon.com/s/wp-content/ql-cache/quicklatex.com-21ad4759d8ac8e3299f333785850143c_l3.png)
Solution: We have $\boldsymbol{A}=\left(\begin{array}{cc}\mathbf{2} & \mathbf{- 1} \\ \mathbf{3} & \mathbf{0} \\ \mathbf{- 1} & \mathbf{4}\end{array}\right)$ and...
If
then write the value of 
Solution: $\text { If }\left[\begin{array}{ll} a & b \\ c & d \end{array}\right]=\left[\begin{array}{ll} e & f \\ g & h \end{array}\right]$ Therefore $a=e, b=f, c=g, d=h$ It is given...
Find the value of
from the following equation : ![Rendered by QuickLaTeX.com 2\left[\begin{array}{ll} 1 & 3 \\ 0 & \mathrm{x} \end{array}\right]+\left[\begin{array}{ll} \mathrm{y} & 0 \\ 1 & 2 \end{array}\right]=\left[\begin{array}{ll} 5 & 6 \\ 1 & 8 \end{array}\right]](https://www.learnatnoon.com/s/wp-content/ql-cache/quicklatex.com-fae2ef579b0094ec795f1c62b9a4b3ba_l3.png)
Solution: It is given that $\begin{array}{l} 2\left[\begin{array}{ll} 1 & 3 \\ 0 & x \end{array}\right]+\left[\begin{array}{ll} y & 0 \\ 1 & 2...
Find the value of
and
, when
i. ![Rendered by QuickLaTeX.com 2\left[\begin{array}{cc}x & 5 \\ 7 & y-3\end{array}\right]+\left[\begin{array}{cc}3 & -4 \\ 1 & 2\end{array}\right]=\left[\begin{array}{cc}7 & 6 \\ 15 & 14\end{array}\right]](https://www.learnatnoon.com/s/wp-content/ql-cache/quicklatex.com-b289d871572f69a53ee3333c591b7fdd_l3.png)
Solution: (i) Given $2\left(\begin{array}{lc} x & 5 \\ 7 y-3 \end{array}\right)+\left(\begin{array}{c} 3-4 \\ 12 \end{array}\right)=\left(\begin{array}{cc} 7 & 6 \\ 1514 \end{array}\right)$...
Find the value of
and
, when
i.
ii. ![Rendered by QuickLaTeX.com \left[\begin{array}{cc}2 x+5 & 7 \\ 0 & 3 y-7\end{array}\right]=\left[\begin{array}{cc}x-3 & 7 \\ 0 & -5\end{array}\right]](https://www.learnatnoon.com/s/wp-content/ql-cache/quicklatex.com-9bc3080cd3ca5d8961ae81f2e6b07c22_l3.png)
Solution: (i) Given $\left(\begin{array}{l}\boldsymbol{x}+\boldsymbol{y} \\ \boldsymbol{x}-\boldsymbol{y}\end{array}\right)=\left(\begin{array}{l}8 \\ \mathbf{4}\end{array}\right)$. By equality of...
If
and
, find:
(i)
(ii) 
Solution: If $Z=\operatorname{diag}[a, b, c]$, then it can be written as $Z=\left[\begin{array}{lll} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{array}\right]$ Therefore, $A+2...
Find the matrix
such that
where
and ![Rendered by QuickLaTeX.com B=\left[\begin{array}{cc}-2 & 1 \\ 0 & 3\end{array}\right]](https://www.learnatnoon.com/s/wp-content/ql-cache/quicklatex.com-327689b71c17725ba5fadd5f6c04b7ea_l3.png)
Solution: It is given that $2 A-B+X=0$ $\begin{array}{l} 2\left(\left[\begin{array}{ll} 3 & 1 \\ 0 & 2 \end{array}\right]\right)-\left[\begin{array}{cc} -2 & 1 \\ 0 & 3...
If
and
, find a matrix
such that 
Solution: It is given that $A+B-C=0$ $\begin{array}{c} {\left[\begin{array}{cc} -2 & 3 \\ 4 & 5 \\ 1 & -6 \end{array}\right]+\left[\begin{array}{cc} 5 & 2 \\ -7 & 3 \\ 6 & 4...
Find matrix
, if ![Rendered by QuickLaTeX.com \left[\begin{array}{rrr}3 & 5 & -9 \\ -1 & 4 & -7\end{array}\right]+X=\left[\begin{array}{lll}6 & 2 & 3 \\ 4 & 8 & 6\end{array}\right]](https://www.learnatnoon.com/s/wp-content/ql-cache/quicklatex.com-45e666fb26d68da37727a27b2abe54f0_l3.png)
Solution: It is given that $\left[\begin{array}{ccc}3 & 5 & -9 \\ -1 & 4 & -7\end{array}\right]+x=\left[\begin{array}{lll}6 & 2 & 3 \\ 4 & 8 & 6\end{array}\right]$...
Find matrices
and
, if
and ![Rendered by QuickLaTeX.com 2 B+A=\left[\begin{array}{ccc}3 & 2 & 5 \\ -2 & 1 & -7\end{array}\right]](https://www.learnatnoon.com/s/wp-content/ql-cache/quicklatex.com-97bab0d2cf485a48b9cadb26dc60dbb6_l3.png)
Solution: $\operatorname{Add} 2(2 A-B)$ and $(2 B+A)$ $\begin{array}{l} 2(2 A-B)+(2 B+A)=2\left(\left[\begin{array}{ccc} 6 & -6 & 0 \\ -4 & 2 & 1...
Find matrices
and
, if
and ![Rendered by QuickLaTeX.com A-B=\left[\begin{array}{ccc}-5 & -4 & 8 \\ 11 & 2 & 0 \\ -1 & 7 & 4\end{array}\right]](https://www.learnatnoon.com/s/wp-content/ql-cache/quicklatex.com-58cb7bbac0f7ccbeaeb8025170c9380e_l3.png)
Solution: Add $(A+B)$ and $(A-B)$ We obtain $(A+B)+(A-B)=\left[\begin{array}{ccc}1 & 0 & 2 \\ 5 & 4 & -6 \\ 7 & 3 & 8\end{array}\right]+\left[\begin{array}{ccc}-5 & -4...
If
, find 
Solution: $5 A=\left[\begin{array}{ccc}5 & 10 & -15 \\ 2 & 3 & 4 \\ 1 & 0 & -5\end{array}\right]$ $A=\left[\begin{array}{ccc}\frac{5}{5} & \frac{10}{5} &...
Let
and
Compute 
Solution: $\begin{array}{l} \left.5 A-3 B+4 C=5\left(\left[\begin{array}{ccc} 0 & 1 & -2 \\ 5 & -1 & -4 \end{array}\right]\right)-3\left(\begin{array}{ccc} 1 & -3 & -1 \\ 0...
Let
and
Find:
i. 
Solution: $\begin{array}{l} \text { i. } A-2 B+3 C \\ \text { A- } 2 B+3 C=\left[\begin{array}{ll} 2 & 4 \\ 3 & 2 \end{array}\right]-2\left(\left[\begin{array}{cc} 1 & 3 \\ -2 & 5...
Let
and
Find:
i.
ii. B – 
Solution: i. $\begin{array}{l} A+2 B=\left[\begin{array}{ll} 2 & 4 \\ 3 & 2 \end{array}\right]+2\left(\left[\begin{array}{cc} 1 & 3 \\ -2 & 5 \end{array}\right]\right) \\...
If
and
, find 
Solution: $\begin{array}{l} 2 A=2\left(\left[\begin{array}{ccc} 3 & 1 & 2 \\ 1 & 2 & -3 \end{array}\right]\right) \\ =\left[\begin{array}{ccc} 6 & 2 & 4 \\ 2 & 4 & -6...
If
and
, verify that 
Solution: $\begin{array}{l} (A+B)+C=\left(\left[\begin{array}{cc} 3 & 5 \\ -2 & 0 \\ 6 & -1 \end{array}\right]+\left[\begin{array}{cc} -1 & -3 \\ 4 & 2 \\ -2 & 3...
If
and
, verify that 
Solution: $\begin{array}{l} A+B=\left[\begin{array}{ccc} 2 & -3 & 5 \\ -1 & 0 & 3 \end{array}\right]+\left[\begin{array}{ccc} 3 & 2 & -2 \\ 4 & -3 & 1...
Mark (√) against the correct answer in the following: The range of
is
A.
B.
C.
D. none of these
Solution: Option(D) is correct. $f(x)=x+\frac{1}{x}$ The range of the function can be given by putting values of $\mathrm{x}$ and find $\mathrm{y}$. $$\begin{tabular}{|l|l|} \hline $\mathrm{X}$ &...
Mark (√) against the correct answer in the following: Let
. Then, range
A.
B.
C.
D. none of these
Solution: Option(B) is correct. $f(x)=\frac{1}{\left(1-x^{2}\right)}$ The range of $f(x)$ can be found out by putting $f(x)=y$ $\begin{array}{l} \mathrm{y}=\frac{1}{\left(1-x^{2}\right)} \\...
Mark (√) against the correct answer in the following: Let
. Then, dom (f) and range (f) are respectively
A.
and
B.
and
C. R and R +
D.
and 
Solution: Option(A) is correct. $f(x)=x^{3}$ $f(x)$ can assume any value, therefore domain of $f(x)$ is $R$ Range of the function can be positive or negative Real numbers, as the cube of any number...
Mark (√) against the correct answer in the following: Let
. Then,
A.
B.
C.
D. None of these
Solution: Option(C) is correct. $f(x)=\sqrt{\log \left(2 x-x^{2}\right)}$ For $f(x)$ to be defined $2 x-x^2$ should be positive. Solving inequality, (Log taken to the opposite side of the equation...
Mark (√) against the correct answer in the following: Let
. Then,
?
A.
B.
C.
D. None of these
Solution: Option(B) is correct. $\begin{array}{l} \mathrm{f}(\mathrm{x})=\cos ^{-1}(3 \mathrm{x}-1) \end{array}$ Domain for function $\cos ^{-1} \mathrm{x}$ is $[-1,1]$ and range is $[0, \pi]$ When...