Answer: Increases the rate of reaction Explanation: Most catalysts work by lowering the 'activation energy' of a reaction. This allows less energy to be used, thus speeding up the reaction. The...
In any reaction, catalyst
Solve the following linear programming problem graphically: Maximise
subject to the constraints:
![Rendered by QuickLaTeX.com \[\begin{array}{l} 3 \mathrm{x}+\mathrm{y} \leq 90 \ldots(3) \\ \mathrm{x} \geq 0, \mathrm{y} \geq 0 \ldots(4) \end{array}\]](https://www.learnatnoon.com/s/wp-content/ql-cache/quicklatex.com-7d56a4ab9174abfcdbb2d874d83498ad_l3.png)
![Rendered by QuickLaTeX.com \[\begin{array}{l} 3 \mathrm{x}+\mathrm{y} \leq 90 \ldots(3) \\ \mathrm{x} \geq 0, \mathrm{y} \geq 0 \ldots(4) \end{array}\]](https://www.learnatnoon.com/s/wp-content/ql-cache/quicklatex.com-7d56a4ab9174abfcdbb2d874d83498ad_l3.png)
The shaded region in fig. is the feasible region determined by the system of constraints (2) to (4). We observe that the feasible region $\mathrm{OABC}$ is bounded. So,we now use Corner Point Method...
![Rendered by QuickLaTeX.com \[\text { The binomial distribution whose mean is } 9 \text { and the variance is } 2.25 \text { is }\]](https://www.learnatnoon.com/s/wp-content/ql-cache/quicklatex.com-85a5b45140eb7a13360e70f6b9202791_l3.png)
$$ \begin{array}{l} \text { Mean }=n p \\ \text { Variance }=n p(1-p) \end{array} $$ Therefore according to question $$ \begin{array}{l} 1-\mathrm{p}=\mathrm{q}=\frac{\text { Variance }}{\text {...
is squal to
$ \begin{array}{l} \operatorname{Lst} I=\int^{\infty} \log (1+\tan x) d x . \ldots .(\mathrm{i}) \\ \rightarrow 1=\int_{0}^{\infty} \log \left|1+\tan \left(\frac{\pi}{4}-x\right)\right| d x...
If
. prove that 
$$ \begin{array}{l} \text { Given : } y=3 e^{2 x}+2 e^{3 x} \\ \Longrightarrow \frac{d y}{d x}=3 e^{2 x} \times 2+2 e^{3 x} \times 3=6 e^{2 x}+6 e^{3 x} \\ \therefore \frac{d y}{d x}=6 e^{2 x}+6...
If
defined by
, if
if
then
is
$$ \begin{array}{l} f(x)=\left\{\begin{array}{cl} x & x>2 \\ 5 x-2 & x \leqslant 2 \end{array}\right. \\ \& f^{\prime}(x)=\left\{\begin{array}{ll} 1 & x>2 \\ 5 & x \leqslant 2 \end{array}\right....
![Rendered by QuickLaTeX.com \[\text { If }\left(\tan ^{-1} x\right)^{2}+\left(\cot ^{-1} x\right)^{2}=\frac{5 \pi^{2}}{8}, \text { then } x \text { equals to }\]](https://www.learnatnoon.com/s/wp-content/ql-cache/quicklatex.com-c459adfb9126ea5f30c7c57732857f14_l3.png)
$$ \begin{array}{l} \text { We have, }\left(\tan ^{-1} x\right)^{2}+\left(\cot ^{-1} x\right)^{2}=\frac{5 \pi^{2}}{8} \\ \Rightarrow\left(\tan ^{-1} x+\cot ^{-1} x\right)^{2}-2 \tan ^{-1} x \cdot...
If
and
, then 
$$ \begin{array}{l} \operatorname{det}(K A)=K^{n} \operatorname{det}(A) \\ \operatorname{det}(\operatorname{adj} A)=|A|^{n-1} \end{array} $$ using the above 2 thus $|2 \operatorname{adj}...
Evaluate 
$\int \frac{3 \mathrm{x}^{2} \mathrm{dx}}{\mathrm{x}^{6}+1}$ $=\int \frac{3 \mathrm{x}^{2} \mathrm{dx}}{\left(\mathrm{x}^{3}\right)^{2}+1}$ $\mathrm{t}=\mathrm{x}^{3} \Rightarrow \mathrm{dt}=3...
The vertices of a triangle are
and
. Find the length of the median through the vertex 
Coordinates of $\mathrm{A} \equiv(-1,3)$ Coordinates of $\mathrm{B} \equiv(1,-1)$ Coordinates of $\mathrm{C} \equiv(5,1)$ The median through the vertex $\mathrm{C}$ will meet at the mid point of...
Evaluate
$$ \begin{array}{l} \int \frac{2 x^{3}-1}{x^{4}+x} d x \\ \Rightarrow \int \frac{\left(4 x^{3}+1\right)-\left(2 x^{3}+2\right)}{x^{4}+x} d x \\ \Rightarrow \int \frac{4 x^{3}+1}{x^{4}+x} d x-2 \int...
Find
and
if
and 
Given, $\mathrm{f}(\mathrm{x})=8 \mathrm{x}^{3}$ and $\mathrm{g}(\mathrm{x})=\mathrm{x}^{1 / 3}$ $($ gof $)(x)=g[f(x)]=g\left(8 x^{3}\right)=g(y)$, where $y=8 x^{3}$ $$ =\mathrm{y}^{1 / 3}=\left(8...
Evaluate
A
(B)
c
D 
Correct ogtion is $$ \text { a } e^{0}\left(\log x-\frac{1}{x}\right) \div e $$ $\int e^{c}\left(\log x+\frac{1}{x^{2}}\right) d x$ $\int e^{\prime} \log x d x+\int e^{\prime} \frac{1}{x^{2}} d x$...
Solve 
$$ \begin{array}{l} \tan y d x+\tan x y=0 \\ \frac{d x}{\tan x}=-\frac{d y}{\tan y} \end{array} $$ Integrating both side, $$ \begin{array}{l} \int \frac{\mathrm{dx}}{\tan x}=-\int...
If
, then
is zero for
If we put $x=\tan \theta$, the given equality becomes $\tan ^{-1} y=4 \theta$ $$ \begin{array}{l} \Rightarrow y=\tan 4 \theta=\frac{2 \tan 2 \theta}{1-\tan ^{2} 2 \theta}=\frac{2\left[\frac{2 \tan...
Find the equation of the plane which cuts intercepts 2,3 and 4 on the
and z-axes respectively.
The equation of plane with intercepts a, b, c is given as $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$ $\Rightarrow$ The equation of plane with intercepts $2,3,4$ is...
Find the angle between the vectors
and 
$$ \begin{array}{l} \overrightarrow{\mathrm{a}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}} \quad \text { and } \quad...
![Rendered by QuickLaTeX.com \[\text { Prove that: } 2 \tan ^{-1}\left(\frac{1}{5}\right)+\sec ^{-1}\left(\frac{5 \sqrt{2}}{7}\right)+2 \tan ^{-1}\left(\frac{1}{8}\right)=\frac{\pi}{4}\]](https://www.learnatnoon.com/s/wp-content/ql-cache/quicklatex.com-17f69e2e5c43f1bda460d6c7370a895f_l3.png)
$$ \begin{array}{l} 2 \tan ^{-1} \frac{1}{5}+\sec ^{-1} \frac{5 \sqrt{2}}{7}+2 \tan ^{-1} \frac{1}{8} \\ =2\left[\tan ^{-1} \frac{1}{5}+\tan ^{-1} \frac{1}{8}\right]+\sec ^{-1} \frac{5 \sqrt{2}}{7}...
Evaluate
if
and 
$$ \begin{array}{l} \mathrm{P}(\mathrm{A} \mid \mathrm{B})=\frac{\mathrm{P}(\mathrm{A} / \mathrm{B})}{\mathrm{P}(\mathrm{B})} \\ \begin{array}{l} \frac{2}{5}=\frac{\mathrm{P}(\mathrm{A} /...
Find direction ratio and the direction cosines of the vector
.
Let $\vec{r}=\hat{i}+\bar{j}+\hat{k}$ $=11 \hat{i}+1 \bar{j}+1 \hat{k}$ Direction ratios are $\mathrm{a}=1, \mathrm{~b}=1, \mathrm{c}=1$ Magnitude of $$...
Evaluate
.
$$ \begin{array}{l} \int \frac{\mathrm{x} \sin ^{-1} \mathrm{x}}{\sqrt{1-\mathrm{x}^{2}}} \mathrm{dx} \quad\left[\text { Here } 1^{\mathrm{st}} \mathrm{F} \text { unction }=\sin ^{-1} \mathrm{x}...
Find
if
.
$$ y=\sec (\sqrt{\tan x}) $$ applying chain nule $$ \begin{aligned} \frac{d y}{d x} &=(\sec \sqrt{\tan n} \times \tan \sqrt{\tan n}) \times \frac{1}{2}(\tan n)^{1 / 2-1} \times \sec ^{2} n \\...
Solve 
$\tan ^{2} \mathrm{x}=\sec ^{2} \mathrm{x}-1$ $\Rightarrow \int_{0}^{\pi / 4}-1 \mathrm{dx}+\int_{0}^{\pi / 4}\left(\sec ^{2} \mathrm{x}\right) \mathrm{dx}$ $=-\pi / 4+[\tan \mathrm{x}\}_{0}^{\pi /...
Evaluate
.
$\int \frac{\sin ^{2} x}{1-\cos x} \cdot d x$ $\sin ^{2} x=1-\cos ^{2} x$ $\int\left(\frac{1-\cos ^{2} x}{1-\cos x}\right) \cdot d x$ $=\int(1+\cos x) d x$ $=\int 1 d x+\int \cos x d x$ $=x+\sin...
Evaluate the determinant:- ![Rendered by QuickLaTeX.com \[\left|\begin{array}{ccc} 3 & -1 & -2 \\ 0 & 0 & -1 \\ 3 & -5 & 0 \end{array}\right|\]](https://www.learnatnoon.com/s/wp-content/ql-cache/quicklatex.com-fd6198056c1c205e13a9acd06361a8e9_l3.png)
![Rendered by QuickLaTeX.com \[\left|\begin{array}{ccc} 3 & -1 & -2 \\ 0 & 0 & -1 \\ 3 & -5 & 0 \end{array}\right|\]](https://www.learnatnoon.com/s/wp-content/ql-cache/quicklatex.com-fd6198056c1c205e13a9acd06361a8e9_l3.png)
Solution:- $$ \left|\begin{array}{ccc} 3 & -1 & -2 \\ 0 & 0 & -1 \\ 3 & -5 & 0 \end{array}\right| $$ Expanding the above determinant along $\mathrm{C}_{1}$, we have $$ \begin{array}{l}...
Find the general solution of the differential equation *** QuickLaTeX cannot compile formula:
\begin{array}{l} \frac{d y}{d x}+\sqrt{\frac{1-y^{2}}{1-x^{2}}}=0
*** Error message:
\begin{array} on input line 8 ended by \end{document}.
leading text: \end{document}
Improper \prevdepth.
leading text: \end{document}
Missing } inserted.
leading text: \end{document}
Missing \cr inserted.
leading text: \end{document}
Missing $ inserted.
leading text: \end{document}
You can't use `\end' in internal vertical mode.
leading text: \end{document}
\begin{array} on input line 8 ended by \end{document}.
leading text: \end{document}
Missing } inserted.
leading text: \end{document}
Emergency stop.
$$ \begin{array}{l} \frac{d y}{d x}+\sqrt{\frac{1-y^{2}}{1-x^{2}}}=0 \\ \frac{d y}{d x}=\frac{-\sqrt{1-y^{2}}}{1+x^{2}} \\ \Rightarrow \int \frac{d y}{\sqrt{1-y^{2}}}=\int \frac{-d...
Find the rate of change or the area of a circle with respect to its radius
when
.
Area of circle $=\pi r^{2}$ $$ \mathrm{A}=\pi \mathrm{r}^{2} $$ differentiating with respect to $\mathrm{r}$ we get $$ \frac{\mathrm{dA}}{\mathrm{dr}}=2 \pi...
$$ \begin{array}{l} \mathrm{I}=\int \csc x \mathrm{dx} \\ \Rightarrow \mathrm{I}=\int \frac{\csc x(\csc x-\cot x)}{(\csc x-\cot x)} \mathrm{dx} \\ \text { Put } \csc x-\cot x=t \\...
If
is an invertible matrix of order 2 then
is equal to
(A)
(B)
(C) 1
(D) 0
Since A is an invertible matrix, As matrix $A$ is of order 2, let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ Then, $|A|=a d-b c$ and $a d y=\left[\begin{array}{cc}d & -b \\ -c &...
?
(A)
(B)
(C)
(D) 
Correct option is (B) $\frac{1}{3} \tan (3 x+5)+c$ $$ \begin{array}{l} \int \sec ^{2}(3 x+5) d x \\ \text { let } 3 x+5=t \\ 3 d x=d t \\ d x=1 / 3 d t \\ \int \sec ^{2} t \cdot \frac{1}{3} \cdot d...
The value of
is
(A) 1
(B)
(C) 2
(D) 3
The answer is (A) 1 $=i(\hat{\imath})+\hat{\jmath} \cdot(-\hat{\jmath})+\hat{f} \cdot(\hat{k})$ $=1-1+1$ $=1$
Find the direction cosines and direction ratios of the line joining the points 
Given the points A $(1,3,5) \& B(-1,0,-1)$ Direction ratios are $\mathrm{a}=-1-1=-2$ $$ \begin{array}{l} \mathrm{b}=0-3=-3 \\ \mathrm{c}=-1-5=-6 \end{array} $$ Now,...
Let
and
be two real functions. Find
g)(x),(f g)(x),\left(\frac{f}{g}\right)(x)
$$ (f+g)(x)=f(x)+g(x) $$ $$ =x^{2}+2 x+1 $$ $$ (f-g)(x)=f(x)-g(x) $$ $$ =x^{2}-(2 x+1) $$ $$ =x^{2}-2 x-1 $$ $$ (f g)(x)=f(x) \cdot g(x) $$ $$ =x^{2}(2 x+1) $$ $$ =2 x^{3}+x^{2} $$ $$...
?
(A)
(B)
(C)
(D) 
The answer is (A) $-\frac{1}{3} \cos x^{3}+k$. Let $u=x^{3}$ so that $d u=3 x^{2} d x$ Out integral becomes: $$ \begin{array}{c} \frac{1}{3} \int\left(\sin x^{3}\right) 3 x^{2} d x=\frac{1}{3} \int...
If the tangent to the curve,
at the point
is perpendicular to the line,
, then which one of the following points lies on the curve? A
B
C
D 
Correct option is B $(2,-2)$ $y=x^{2}+a x-b$ $(1,-5)$ lies on the curve $\Rightarrow-5=1+\mathrm{a}-\mathrm{b} \Rightarrow \mathrm{a}-\mathrm{b}=-6$.(i) $\mathrm{AlsO}, y^{\prime}=3 x^{2}+a$...
If
then
is
(A) 0
(B)
(C) 1
(D) not defined
Correct option is D Not defined It is given that, $P(A)=\frac{1}{2}$ and $P(B)=0$ $$ P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{P(A \cap B)}{0} $$ Therefore, $P(A \mid B)$ is not defined. Thus, the...
The number of all possible matrices of order
with each entry 0 or 1 is.
A. 27
B. 18
C. 81
D. 512
A matrix of order $3 \times 3$ has 9 elements. Now each element can be 0 or $1 .$ $\therefore 9$ places can be filled up in $2^{9}$ ways required number of matrices $=2^{9}$ $$ \begin{array}{l} =2...
?
(A)
(B)
(C)
(D) 
The correct option is (A) $x+k$ $$ \begin{aligned} & \frac{(\sin x+\cos x) \cdot d x}{\sqrt{1+\sin 2 x}} \\ =& \frac{(\sin x+\cos x) \cdot d x}{\sqrt{(\sin x+\cos x)^{2}}} \\ =& \frac{(\sin x+\cos...
The integrating factor of the differential equation
is
Given $x \cdot \frac{d y}{d x}+2 y=x^{2}$ $$ \frac{\mathrm{dy}}{\mathrm{dx}}+\frac{2}{\mathrm{x}} \cdot \mathrm{y}=\mathrm{x} $$ This is in the form of $\frac{\mathrm{dy}}{\mathrm{dx}}+\mathrm{P}...
is equal to
(A)
(B)
(C) 0
(D) 
The correct answer is (A) $-\frac{\pi}{2}$. $$ \tan ^{-1} \sqrt{3}-\cot (-\sqrt{3}) $$ $\because \tan \frac{\pi}{3}=\sqrt{3}$ and $\cot \left(\pi-\frac{\pi}{6}\right)=-\sqrt{3}$ $$ \tan ^{-1}...
Find the minimum value of
, subject to the constraints
and
, subject to the constraints
and 
$Z=3 x+5 y$, subject to the constraints $-2 x+y \leq 4, x+y \geq 3, x-2 y \leq 2, x \geq 0$ and $y \geq 0$ Draw the line $-2 x+y=4, x+y=3$ and $x-2 y=2$ and shaded region which is satisfied by above...
?
(A)
(B)
(C)
(D) 
Integrating by parts, $$ \begin{array}{l} \mathrm{u}=\mathrm{x}^{2}, \mathrm{v}=\mathrm{e}^{\mathrm{x}} \\ \mathrm{u}^{\prime}=2 \mathrm{x}, \int \mathrm{vdx}=\mathrm{e}^{\mathrm{x}} \\...
?
(A)
(B)
(C)
(D) 
Answer is (B) $\sec x \tan x$ $$ \begin{array}{l} \frac{\mathrm{d}}{\mathrm{dx}}(\sec \mathrm{x})=\frac{\mathrm{d}}{\mathrm{dx}}\left\{\frac{1}{\cos \mathrm{x}}\right\} \\ =\frac{\cos \mathrm{x}...
?
(A)
(B)
(C)
(D) 
Correct option is (A) $x+k$ Explanation: $$ \int d x=\int 1 d x=\int x^{0} d x $$ Using the standard power rule of integration, $$ \int x^{0} d x=\frac{x^{0+1}}{0+1}+C=x+k $$
?
(A)
(B)
(C)
(D) 
Correct option is (A) $\tan (\log x)+k$ Let $I=\int \frac{\sec ^{2}(\log x)}{x} d x$ Put $\log x=t \Rightarrow \frac{1}{x} d x=d t$ $$ \therefore \int \sec ^{2} t d t=\tan t+c=\tan (\log x)+c $$
If
are in A.P, then the determinant
is
A 0
B 1
C
D 
Correct option is (A)0 Given $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in A.P. $$ \Rightarrow 2 \mathrm{~b}=\mathrm{a}+\mathrm{c} $$ $$ \left|\begin{array}{lll} \mathrm{x}+2 & \mathrm{x}+3 &...
?
(A)
(B)
(C)
(D) 
Correct option is A $\int \tan x=\int(\sin x / \cos x) \cdot d x$ This can be rewritten as $\int 1 / \cos x \cdot \sin x \cdot d x$ Let us find the indefinite integral of $\tan x$ using the...
?
(A) 0
(B) 1
(C)
(D) 
Correct option is (A) 0 Sol:- The given relation should be $$ \begin{array}{l} \cot \left(\tan ^{-1} x+\cot ^{-1} x\right) \\ \text { we know } \tan ^{-1} x+\cot ^{-1} x=\frac{\pi}{2} \\ \therefore...
The height of
tower at a certain place is
. The maximum distance up to which its programme can be received is (a)
(b) 245km (c)
(iv) 
Answer: Option (c)$\mathbf{5 6} \mathbf{~ k m}$ Answer: Option (b)245km
The Boolean expression for NAND gate is (a)
(b)
(c) 
Answer: Option (d)
The value of angle of dip at the earth’s magnetic pole is (a)
(b)
(c)
(d) 
Answer: Option (c)$90^{\circ}$
The stored energy, of a capacitor charged to
, is 1 J. capacitor is (a)
(b)
(c)
(d) 
Answer: Option (b) $2 \times 10^{4} \mathrm{~F}$
The current flowing; in a wire is 1 A. if the charge of an electron is
, then the number of electrons flowing through the wire per second is (a)
(b)
(c)
(d) 
Answer: Option (b)$6.25 \times 10^{18}$
The energy of a photon of wavelength
is (a)
(b)
(c)
(d) 
Answer: Option (b)$\frac{h c}{\lambda}$
The ratio of root mean (rms) value and peak value of alternative current is (a)
(b)
(c)
(d) 
Answer: Option (b)$\frac{1}{\sqrt{2}}$
At constant potential difference, the resistance of any electric circuit is halved, the value of heat produced will be (a) Half (b) Double (c) four (d) Same
Answer: Option (b) Double
In an alternating current circuit, the phase difference between curren I and voltage
, then the Wattles component of current will be (a)
(b) Double (c) four (d) Same
Answer: Option (c)four
The working of dynamo is based on the principle of (a) Heating effect of current (b) Electro-magnetic induction (c) Induced magnetism (d) Induced electricity
Answer: Option (b)Electro-magnetic induction
The magnifying power of an astronomical telescope for normal adjustment is (a)
(b)
(c)
(d) 
Answer: Option (c)$-\frac{f_{e}}{f_{0}}$
The resistance of ideal ammeter is (a) Zero (b) Very small (c) Very large (d) Infinite
Answer: Option (a)Zero
The direction of propagation of electromagnetic wave is (a) Parallel to
(b) Parallel to
(c) Parallel to
(d) parallel to 
Answer: Option (d) parallel to $\vec{E} \times \vec{B}$
A convex lens
is immersed in water
, then it will behave as a (a) Converging lens (b) Diverging lens (c) Prism (d) Concave mirror
Answer: Option (b)Diverging lens
The power factor of
circuit is (a) R+WL (b)
(c)
(d) 
Answer: Option (b) $\frac{R}{\sqrt{R^{2}+W^{2} L^{2}}}$
The electric potential in equatorial position of an electric dipole is (a)
(b)
(c)
(d) Zero
Answer: Option (d)Zero
With the increase on temperature the resistivity of semiconductor (a) Increases (b) Decreases (c) Remains constant (d) Becomes zero
Answer: Option (b) Decreases
In a step-up transformer, no, of turns in primary and secondary coils are
and
then (a)
(b)
(c)
(d) 
Answer: Option (b) $N_{2}>N_{1}$
When two bulbs of power
and
are connected in series, then the power of their combination will be (a)
(b)
(c)
(d) 
Answer: Option (a)$100 \mathrm{~W}$
The wave front due to a point source at a finite distance from the source is (a) Spherical (b) Cylindrical (c) Plane (d) Circular
Answer: Option (a)Spherical
Light owes its colour to its (a) Frequency (b) Velocity (c) Phase (d) Amplitude
Answer: Option (b)Velocity
In earth’s magnetic field
, if the frequency of oscillation of a magnetic needle is
, then (a)
(b)
(c)
(d) 
Answer: Option (b)$n^{2} \propto B_{H}$
If
charge is placed inside any spherical surface then total flux coming out from whole surface will be (a)
(b)
(c)
(d)
Answer: Option (b) $\frac{q}{\varepsilon_{0}}$
Cylindrical lenses are used to correct the eye defect called (a) Myopia (b) Hypermetropia (c) Astigmatism (d) Presbyopia
Answer: Option (c)Astigmatism
Equivalent focal length of two lenses in contact having power -15D and +5D will be (a)
(b)
(c)
(d) 
Answer: Option (b)$-10 \mathrm{~cm}$
Power of an electric
circuit is (a) V.R (b)
(C)
(d) 
Answer: Option (c)$\frac{V^{2}}{R}$
The solar spectrum is (a) Continuous (b) Line spectrum (C) Spectrum of blank lines (d) Spectrum of blank bands
Answer: Option (c)Spectrum of blank lines
Two point charges of
and
are placed at a distance
in air. Potential energy of the system will be (a)
(b)
(c)
(d) 
Answer: Option (c) $-2.25 \mathrm{~J}$
The time in which radioactive substance becomes half of its initial amount is called (a) Average life (b) Half-life (c) Time-period (d) Decay constant
Answer: Option (b)Half-life
Deviation of a thin prism of refractive index
and angle of
is (a)
(b)
(c)
(d) 
Answer: Option (b)$(n-1) A$
Unit of surface charge density is (a) Coulomb/metre
(b) newton/metre (c) Coulomb/volt (d) Coulmb/metre
Answer: Option (a)Coulomb/metre $^{2}$
The susceptibility of paramagnetic substance is (a) Constant (b) Zero (b) Infinity (d) Depends on magnetic field
Answer: Option (a) Constant
The torque
experienced by a current-loop of magnetic moment
placed in magnetic field
is (a)
(b)
(C)
(d) 
Answer: Option (a)$\vec{\tau}=\vec{M} \times \vec{B}$
Let
be a non-singular matrix of the order
then
(a)
(b)
(c)
(d) 
SOL: Correct option is C.$|A|^{2}$
solution of
is (a)
(b)
(c)
(d) 1
SOL: Correct option is C.
(a)
(b)
(c)
(d) 
SOL: Correct option is B. $2 \log (1+\sqrt{x})+C$
If
and
are two events such that
and
(a)
(b)
(c)
(d) 
SOL: Correct option is B. $A \subset B$
If
and
then
(a) 2 (b)
(c)
(d) 
SOL: Correct option is (c) $\frac{2}{3}$
If events
and
are mutually exclusive then: (a)
(b)
(c)
(d) 
SOL: Correct option is B. $P(A \cap B)=0$
If A’ and B’ are independent events then: (a)
(b)
12 (c)
(d) 
SOL: Correct option is C. $P\left(A^{\prime} B^{\prime}\right)=P\left(A^{\prime}\right) \cdot P\left(B^{\prime}\right)$
The distance between
and
is: (a) 13 (b) 15 (c) 12 (d) 5
SOL: Correct option is A. 13
If two planes
and
are perpendicular to each other, then
(a)
(b) 2 (c) 3 (d) None of these
SOL: Correct option is B.2
The equation of the
-plane is: (a)
(b)
(c)
(d) None of these
SOL: Correct option is B. $z=0$
The direction Cosines of
axis are: (a)
(b)
(c)
(d) None of these
SOL: Correct option is B. $(0,1,0)$
\vec{i} \times(\vec{i} \times \vec{j})+\vec{j} \times(\vec{j} \times \vec{k})+\vec{k}(\vec{k} \times \vec{i})
\vec{i}+\vec{j}+\vec{k}
-(\vec{i}+\vec{j}+\vec{k})$
SOL: Correct option is C. 1
\vec{i} \times(\vec{i} \times \vec{j})+\vec{j} \times(\vec{j} \times \vec{k})+\vec{k}(\vec{k} \times \vec{i})
\vec{i}+\vec{j}+\vec{k}
-(\vec{i}+\vec{j}+\vec{k})$
SOL: Correct option is C. 1
are perpendicular to each other then value of
(a)
(b) 2,5 (c)
(d) 
SOL: Correct option is D. $2,-5$
The direction cosines of the vector
is (a)
(b)
(c)
(d) 
SOL: Correct option is B. $\frac{3}{13}, \frac{-4}{13}, \frac{12}{13}$
The direction cosines of the vector
is (a)
(b)
(c)
(d) 
SOL: Correct option is B. $\frac{3}{13}, \frac{-4}{13}, \frac{12}{13}$
If
, then the corresponding unit vector
in the direction of
(a)
(b)
(c)
(d) None of these
SOL: Correct option is B. $\frac{\vec{i}+\vec{j}+2 \vec{k}}{\sqrt{6}}$
solution of
is: (a)
(b)
(c)
(d) 
SOL: 10 Correct option is B. $\frac{x^{2}}{2}+\tan ^{-1} \frac{y}{x}=k$
Integrating factor (I.F) of differential equation
is (a)
(b)
(c)
(d) None of these
SOL: Correct option is B. $^{x}$
solution of the differential equation
is (a)
(b)
(c)
(d) None of these
SOL: Correct option is B. $x=k y e^{x}$
The differential equation
is of order
and and degree
(a) Order
, degree
(b) Order
, degree
(c) Order
, degree
(d) None of these
SOL: Correct option is A. Order $=2$, degree $=3$
(a) 0 (b) 1 (c) 2 (d) 
SOL: Correct option is D. $\frac{1}{2}$
Area between the
-axis and the curve
from
to
: (a)2 (b)
(c) 1 (d) None of these
SOL: Correct option is (c) 1
(a) 1 (b)
(c)
(d) 0
SOL: Correct option is D. 0
If
then
(a)
(b) 0 (c) 1 (d) 
SOL: Correct option is (b) 0
\int \frac{d x}{a^{2}+x^{2}}=
\frac{1}{a} \tan ^{-1} \frac{a}{x}+c
\tan ^{-1} \frac{x}{a}+c
\frac{1}{a} \tan ^{-1} \frac{x}{a}+c
\frac{1}{a} \tan ^{-1} x+c$
SOL: Correct option is (c) $\frac{1}{a} \tan ^{-1} \frac{x}{a}+c$
(a)
(b)
(c)
(d) 
SOL: Correct option is (c) $\frac{e^{x}}{x+1}+c$
(a)
(b)
(c)
(d) 
SOL: Correct option is B. $\frac{1}{3} e^{x^{3}}+c$
\cdot \int \sqrt{1+\cos 2 x} d x=
\sqrt{2} \cos x+c
\sqrt{2} \sin x+c
-\cos x-\sin x+c
\sqrt{2} \sin \frac{x}{2}+c$
SOL: Correct option is B. $\sqrt{2} \sin x+c$
(a)
(b)
(c) 1 (d) 0
SOL: Correct option is D. 0
Equation of the tangent to the curve
at
is (a)
(b)
(c)
(d) 
SOL: Correct option is D. $x x_{1}+y y_{1}=a^{2}$
If
then
at
has the value (a) 1 (b)
(c) 0 (d) 
SOL; Correct option is (c) 0
is maximum then value of
(a)
(b)
(c)
(d) 
SOL: Correct option is C. $\frac{\pi}{3}$
is maximum then value of
(a)
(b)
(c)
(d) 
SOL: Correct option is C. $\frac{\pi}{3}$
\cdot \frac{d\left(2^{x}\right)}{d\left(3^{x}\right)}=
\left(\frac{2}{3}\right)^{x}
\frac{2^{x-1}}{3^{x-1}}
\left(\frac{2}{3}\right)^{x} \log _{3} 2
\left(\frac{2}{3}\right)^{x} \log _{2} 3$
\cdot \frac{d\left(2^{x}\right)}{d\left(3^{x}\right)}=$ (a) $\left(\frac{2}{3}\right)^{x}$ (b) $\frac{2^{x-1}}{3^{x-1}}$ (c) $\left(\frac{2}{3}\right)^{x} \log _{3} 2$ (d)...
(a)
(b) 1 (c) 0 (d) 
SOL: Correct option is (c) 0
If
then,
(a)
(b)
(c)
(d) 
Correct option is $B.$\frac{y}{x}$
(a)
(b)
(c)
(d) 
SOL: Correct option is $A. $\frac{1}{\sec x+\tan x}$
Let
be a non-singular matrix of the order
then
(a)
(b)
(c)
(d) 
SOL: Correct option is C.$|A|^{2}$
If
is a matrix of order
such that
then
is equal to? (a)
(b)
(c)
(d) 
SOL: Correct option is A. $I_{3}$
If
be a square matrix. Then
‘ will be………… (a)Symmetric matrix (b) Skew symmetric matrix (c) Null matrix (d) Unit matrix
SOL: Correct option is (a)Symmetric matrix
If
and
then
(a)
(b)
(c)
(d) 
SOL: Correct option is B. $\frac{\pi}{3}$
If
and
then
(a) 1 (b)
(c)
(d) 0
SOL; Correct option is D. 0
If 7 and 2 are two roots of the equation
then the third root is: (a)
(b) 14 (c)
(d) None of these
SOL: Correct option is A. $-9$
If
and
aren in A.P then
a) 3 (b)
(c) 0 (d) 1
Correct option is C.0
If
and
aren in A.P then
a) 3 (b)
(c) 0 (d) 1
If $\mathrm{a}, \mathrm{b}$ and $\mathrm{c}$ aren in A.P then $\left|\begin{array}{ccc}x+1 & x+2 & x+a \\ x+2 & x+3 & x+b \\ x+3 & x+4 & x+c\end{array}\right|=$ a) 3 (b) $-3$...
.If
and
then
(a)
(b)
(c)
, (d) None of these
SOL: Correct option is A. $\left|\begin{array}{ll}\lambda a & \lambda b \\ \lambda c & \lambda d\end{array}\right|$
(a)
(b)
(c)
(d) 
SOL: Correct option is B. $\frac{3 \pi}{4}$
(a)
(b)
(c)
(d) None of these
SOL: Correct option is D. None of these
(a)
(b)
(c)
(d) 
SOL: Correct option is D. $\frac{4 \pi}{5}$
What type of a relation is “Less then” in the set of real numbers ? (a)Only symmetric (b) Only transitive (c)Only reflexive (d) equivalence relation
SOL: Correct option is B. Only transitive
If
and
is a function such that
then what type of a function is
?(a)into (b) one-one onto (c)many-one onto (d)Constant function
SOL: Correct option is B. one-one onto
let
which of the following function
does not an inverse function ? 1 (A)
(b)
(c)
(d) 
Sol: Correct option is B. $\{(1,2),(2,1),(3,1)\}$
let
How many binary operation can be defined on this set? (a) 8 (b) 10 (c)
(d) 20
Sol: Correct option is C$-16$
If
and
then
(a) 0 (b)
(c) 1 (d) 4
Sol: Correct option is B.$\frac{5}{8}$
If
and
are three event independent of each other then
(a)
(b)
(c)
(d) 
Sol: Correct option is D.$P(A) P(B) P(C)$
If S be the sample space and E be the event then
(a)
(b)
(c)
(d) 
Sol: Correct option is A.$\frac{n(E)}{n(S)}$
If
and
are two independent event then
(a)
(b)
(c)
(d) 
Sol: Correct option is A.$P(A) \cdot P(B)$
The direction ratio of the normal to the plane
are (a)
(b)
(c)
(d) 
Sol: Correct option is A.$7,4,-2$
A line is passing through
and its direction cosines are
then the equations of the line are- (a)
(b)
(c)
(d) 
Correct option is D $\frac{x-\alpha}{l}=\frac{y+\beta}{m}=\frac{z-\gamma}{n}$
let a,b,c be the direction ratios of a line then direction cosines are (a)
(b)
(c)
(d) 
Sol: Correct option is D.$\frac{a}{\sqrt{\sum a^{2}}}, \frac{b}{\sqrt{\sum b^{2}}}, \frac{c}{\sqrt{\sum c^{2}}}$
Let
and
be the direction cosines of two st-lines both the lines are perpendicular to each other, if- (a)
(b)
(c)
(d) 
Sol: Correct option is A.$l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2}$
(a) 1 (b) 0 (c) 2 (d) 
Sol: Correct option is A.1
The direction cosines of z-axis are- (a)
(b)
(c)
(d) 
Sol: Correct option is C.$(0,0,1)$
(a)
(b)
(c)
(d) 1
Sol: Correct option is A. $\vec{i}$
If
and
are mutually perpendicular then
(a) 1 (b) 0 (c) 2 (d) 3
Sol: Correct option is B. 0
If
then
(a) 10 (b)
(c) 20 (d) 5
Sol: Correct option is B.$-10$
If
and
then
(a)
(b)
(c)
(d) 
Sol: Correct option is A.$\vec{i}+\vec{j}+7 \vec{k}$
(a) 14 (b)
(c)
(d) 2
Sol: Correct option is A.14
The position vector of the point
is (a)
(b)
(c)
(d) 
Sol: Correct option is A.$4 \vec{i}+5 \vec{j}+6 \vec{k}$
The position vector of the point
is (a)
(b)
(c)
(d) 
Sol: Correct option is A.$4 \vec{i}+5 \vec{j}+6 \vec{k}$
The degree of the equation
is (a) 0 (b) 1 (c) 2 (d) 3
Sol: Correct option is D. 3
The order of the differential equation
is- (a)0 (b) 1 (c) 2 (d) 3
Sol: Correct option is B.1
The solution of the differential equation
is (a)
(b)
(c)
(d) 
Sol: Correct option is C.$e^{x}-e^{y}=k$
.The solution of
is- (a)
(b)
(c)
(d) 
Sol: Correct option is A. $\frac{y^{2}}{2}-\frac{x^{2}}{2}=k$
(a)
(b)
(c)
(d) 0
Sol: Correct option is B. $\frac{b^{4}-a^{4}}{4}$
(a)
(b)
(c)
(d) 
Sol: Correct option is D. $\log x+k$
(a)k (b) 0 (c) 1 (d) 
Sol: Correct option is B.0
The solution of
is- (a)
(b)
(c)
(d) 
Sol: Correct option is A. $\frac{y^{2}}{2}-\frac{x^{2}}{2}=k$
(a)
(b)
(c)
(d) 0
Sol: Correct option is B. $\frac{b^{4}-a^{4}}{4}$
(a)
(b)
(c)
(d) 
Sol: Correct option is D. $\log x+k$
(a)k (b) 0 (c) 1 (d) 
Sol: Correct option is B.0
(a)
(b)
(c)
(d) 
Sol: Correct option is (A).$\frac{x^{6}}{6}+k$
If
then
(a)
(b)
(c)
(d) 
Sol: Correct option is (C)$5 x^{4}$
If
, then
(a)
(b)
(c) 0 (d) 1
Sol: Correct option is (A)$\frac{1}{x} \cos (\log x)$
(a)
(b) 0 (c) 2 (d) 1
Sol: Correct option is (A)$\frac{2}{1+x^{2}}$
(a)
(b)
(c)
(d) 
Sol: Correct option is (C)$\frac{1}{\sqrt{1-x^{2}}}$
(a)
(b)
(c)
(d) 0
Sol: Correct option is (C)$\sec x \tan x$
If
and
then
(a)
(b)
(c)
(d) ![Rendered by QuickLaTeX.com \left[\begin{array}{ccc}25 & 10 & 15 \\ 15 & 10 & 25\end{array}\right]](https://www.learnatnoon.com/s/wp-content/ql-cache/quicklatex.com-0bce232786cbecad4bafb5ae0baa8d34_l3.png)
Sol: Correct option is(A).$\left[\begin{array}{lll}20 & 20 & 20 \\ 20 & 20 & 20\end{array}\right]$
(a) 4 (b) 0 (c) 3 (d)6
Sol: Correct option is B.0
If
then
(a)
(b) 6 (c) 0 (d) 4
Sol: Correct option is A.$\pm 5$
(a)
(b)
(c)
(d) 
Sol; Correct option is B.$\tan ^{-1} \frac{6}{7}$
? (a)
(b)
(c)
(d) 
Sol: Correct option is A. $\frac{\pi}{4}$
(a) 5 (b) 7 (c) 0 (d) 9
Sol: Correct option is (C)0
(a)
(b)
(c)
(d) 
Sol: Correct option is (B)$a \sec ^{2} a x$
(a)
(b)
(c)
(d) 
Sol: Correct option is A.$\cos x$
.If
such that
then which of the following
(a)
(b)
(c)
(d) 
Sol: Correct option is A. $\frac{x+4}{3}$
If
and
then
1 (a) 6 (b) 4 (c)2 (d) 0
Sol: Correct option is A.
1.If
,then how many equivalence relation can be defined on A containing
(a)2 (b) 3 (c) 8 (d) 6
Sol: Correct option is A.2
(A)
(B)
(C)
(D) 
Sol. Correct option is (D).$\cot ^{-1} x+k$
(A)
(B)
(C)
(D) 
Sol. Correct option is (D).$\cot ^{-1} x+k$
(A)
(B)
11 (C)
(D) 
Sol. Correct option is (D).$2 \tan ^{-1} x$
(A) 40 (B) 0 (C) 3 (D) 25
Correct option is (A).40
The matrix
has no inverse if the value of
is (A) 0 (B) 5 (C)
(D) 
Sol. Correct option is (A).0
If
and
are two independent events, then (A)
(B)
(C)
(D) ![Rendered by QuickLaTeX.com \[P\left(A B^{\prime}\right)=P(A)+P\left(B^{\prime}\right)\]](https://www.learnatnoon.com/s/wp-content/ql-cache/quicklatex.com-6a1c5d72d04f267f9444200942372d3a_l3.png)
![Rendered by QuickLaTeX.com \[P\left(A B^{\prime}\right)=P(A)+P\left(B^{\prime}\right)\]](https://www.learnatnoon.com/s/wp-content/ql-cache/quicklatex.com-6a1c5d72d04f267f9444200942372d3a_l3.png)
Sol. Correct option is (A). $P\left(A B^{\prime}\right)=P(A) P(B)$
If
, then
(A)
(B)
(C)
(D) 
Correct option is (D).$\frac{3}{8}$
The length of the perpendicular from the point
to the plane
his. (A) 0 (B)
(C)
(D) 2
Sol. Correct option is (D).2
The lines
and
are parallel is each other if (A)
(B)
(C)
(D) 
Sol. Correct option is (D). $l m n=36$
A line passing through
and its direction ratios are
. The equation of the line is (A)
(B)
(C)
(D) 
9 Correct option is (B). $\frac{x-2}{3}=\frac{y+1}{-1}=\frac{z-3}{2}$
The direction ratios of two straight lines are
and
. The lines will be perpendicular to each other if. (A)
(B)
(C)
(D) 
Sol. Correct option is (C). $l l_{1}+m m_{1}+n n_{1}=0$
The direction between the points
and
is (A)
(B)
(C)
(D) 
Sol. Correct option is (A). $\frac{1}{\sqrt{35}}, \frac{3}{\sqrt{35}}, \frac{5}{\sqrt{35}}$
The distance between the points
and
is 8 (A) 7 (B) 12 (C) 13 (D) 25
Sol. Correct option is (C).13
, are the direction cosines of a straight line them (A)
(B)
(C)
(D) 
Correct option is (D)$l^{2}+m^{2}+n^{2}=1$
The direction cosines of the
-axis are (A)
(B)
(C)
(D) 
Sol. Correct option is (B).$(1,0,0)$
(A) 0 (B) 1 (C)
(D) 
Sol. Correct option is (B).1
(A) 0 (B) 1 (C)
(D) 
Sol. Correct option is (C). $\vec{k}$
(A) 0 (B) 1 (C)
(D) a
Sol. Correct option is (B).1
If
and
are perpendicular to each other then (A)
(B)
(C)
(D) 
Sol. Correct option is (A).$\vec{a} \cdot \vec{b}=0$
.If
, then
(A) 2 (B) 3 (C) 5 (D) 7
Sol. Correct option is (C)5