Find a particular solution satisfying the given condition for each of the following differential equations. \mathrm{x} \frac{\mathrm{dy}}{\mathrm{d} \mathrm{x}}+\mathrm{y}=\mathrm{x}^{3}, given that y=1 when x=2
Find a particular solution satisfying the given condition for each of the following differential equations. \mathrm{x} \frac{\mathrm{dy}}{\mathrm{d} \mathrm{x}}+\mathrm{y}=\mathrm{x}^{3}, given that y=1 when x=2

Solution:

\mathrm{x} \frac{d y}{d x}+y=x^{3}\dots(1)
General solution for the differential equation in the form of \frac{d y}{d x}+\mathrm{Py}=\mathrm{Q} is given by,
y \cdot(I . F .)=\int Q \cdot(I . F .) d x+c
Where, integrating factor,
\text { I. } F .=e \int^{p d x}
Dividing equation (1) by \mathrm{x} we get
\frac{d y}{d x}+\frac{1}{x} \cdot y=x^{2} \ldots \ldots \ldots(2)
Equation (2) is of the form
\frac{d y}{d x}+\mathrm{Py}=\mathrm{Q}
Where, \mathrm{P}=1 / \mathrm{x} and \mathrm{Q}=\mathrm{x}^{2}
Therefore, integrating factor is
\text { I. } F .=e \int^{p d x}=e^{\int \frac{1}{x} d x}=\mathrm{x}
General solution is
\begin{array}{l} y \cdot(I . F .)=\int Q \cdot(I . F .) d x+c \\ y \cdot x=\int x^{2} x \mathrm{dx}+\mathrm{c} \\ \mathrm{xy}=\int x^{3} d x+c \\ \mathrm{xy}=\frac{x^{4}}{4}+c \end{array}
Dividing above equation by x,
\mathrm{y}=\frac{x^{3}}{4}+\frac{c}{x} \text { (general equation) }
For particular solution put \mathrm{y}=1 and \mathrm{x}=2 in above equation \mathrm{c}=-2
Therefore, particular solution is
\mathrm{y}=\frac{x^{3}}{4}-\frac{2}{x}