**Answer:**

The equation of plane is:

$\overrightarrow{r}=(2\hat{i}\u2013\hat{j}+3\hat{k})+\lambda (3\hat{i}\u2013\hat{j}+2\hat{k})$\vec{r}=(2 \hat{i}-\hat{j}+3 \hat{k})+\lambda(3 \hat{i}-\hat{j}+2 \hat{k})

On comparing with

Here,

The equation of plane

$\overrightarrow{r}\xb7(i+j+\hat{k})=3$\vec{r} \cdot(i+j+\hat{k})=3

On comparing with

$\overrightarrow{n}=(i+j+\hat{k})$\vec{n}=(i+j+\hat{k})

Let ‘ ‘ be the anyle between line and plane