Find the equation of the plane which is perpendicular to the plane 5x + 3y + 6z + 8 = 0 and which contains the line of intersection of the planes x + 2y + 3z – 4 = 0 and 2x + y – z + 5 = 0.
Find the equation of the plane which is perpendicular to the plane 5x + 3y + 6z + 8 = 0 and which contains the line of intersection of the planes x + 2y + 3z – 4 = 0 and 2x + y – z + 5 = 0.

According to ques,

planes are

    \[{{P}_{1}}:\text{ }5x\text{ }+\text{ }3y\text{ }+\text{ }6z\text{ }+\text{ }8\text{ }=\text{ }0\]

    \[{{P}_{2}}:\text{ }x\text{ }+\text{ }2y\text{ }+\text{ }3z\text{ }\text{ }4\text{ }=\text{ }0\]

    \[{{P}_{3}}:\text{ }2x\text{ }+\text{ }y\text{ }\text{ }z\text{ }+\text{ }5\text{ }=\text{ }0\]

So,

the equation of the plane passing through the line of intersection of P1 and P3 is:

    \[\left( x\text{ }+\text{ }2y\text{ }+\text{ }3z\text{ }\text{ }4 \right)\text{ }+\text{ }\lambda \left( 2x\text{ }+\text{ }y\text{ }\text{ }z\text{ }+\text{ }5 \right)\text{ }=\text{ }0\]

    \[\left( 1\text{ }+\text{ }2\lambda  \right)x\text{ }+\text{ }\left( 2\text{ }+\text{ }\lambda  \right)y\text{ }+\text{ }\left( 3\text{ }\text{ }\lambda  \right)z\text{ }\text{ }4\text{ }+\text{ }5\lambda \text{ }=\text{ }0\text{ }\ldots .\text{ }\left( i \right)\]

Since plane (i) is perpendicular to P1,

    \[5\left( 1\text{ }+\text{ }2\lambda  \right)\text{ }+\text{ }3\left( 2\text{ }+\text{ }\lambda  \right)\text{ }+\text{ }6\left( 3\text{ }\text{ }\lambda  \right)\text{ }=\text{ }0\]

    \[5\text{ }+\text{ }10\lambda \text{ }+\text{ }6\text{ }+\text{ }3\lambda \text{ }+\text{ }18\text{ }\text{ }6\lambda \text{ }=\text{ }0\]

    \[7\lambda \text{ }+\text{ }29\text{ }=\text{ }0\]

    \[\lambda \text{ }=\text{ }-29/7\]

Putting the values in equation (i),

NCERT Exemplar Solutions Class 12 Mathematics Chapter 11 - 36

    \[-15x\text{ }\text{ }15y\text{ }+\text{ }50z\text{ }\text{ }28\text{ }\text{ }145\text{ }=\text{ }0\]

    \[-15x\text{ }\text{ }15y\text{ }+\text{ }50z\text{ }\text{ }173\text{ }=\text{ }0\Rightarrow 51x\text{ }+\text{ }15y\text{ }\text{ }50z\text{ }+\text{ }173\text{ }=\text{ }0\]

Therefore,

the required equation of plane is:

    \[~51x\text{ }+\text{ }15y\text{ }\text{ }50z\text{ }+\text{ }173\text{ }=\text{ }0.\]