Find the general solution for each of the following differential equations. \left(1-x^{2}\right) \frac{d y}{d x}+x y=a x
Find the general solution for each of the following differential equations. \left(1-x^{2}\right) \frac{d y}{d x}+x y=a x

Solution:

\left(1-x^{2}\right) \frac{d y}{d x}=x y=a x-\ldots(1)
To solve (1) we will use following formula
\begin{array}{r} \int \frac{f^{\prime}(X)}{f(x)} d x=\log f(x)+\mathrm{C} \\ a \log b=\log b^{a} \\ a^{\log _{a} b}=\log b \end{array}
General solution for the differential equation in the form of is given by,
\begin{array}{c} \frac{d y}{d x}+P y=Q \\ y \cdot(I . F .)=\int Q \cdot(\text { I.F. }) d x+c \end{array}
Where, integrating factor,
\text { I. } F .=e \int^{p d x}
Dividing equation (1) by \left(1-x^{2}\right),
\frac{d y}{d x}+\frac{x}{\left(1-x^{2}\right)} \cdot y=\frac{a x}{\left(1-x^{2}\right)} \ldots \ldots \ldots(2)
Comparing (2) with
\frac{d y}{d x}+P y=Q
Where, P=\frac{x}{\left(1-x^{2}\right)} and Q=\frac{a x}{\left(1-x^{2}\right)}
Therefore, integrating factor is
\begin{aligned} \text { I. } F .=e \int p d x \\ = e^{\int \frac{x}{\left(1-x^{2}\right)} d x} \\ = e^{\frac{-1}{2} \int \frac{-2 x}{\left(1-x^{2}\right)} d x} \end{aligned}
\operatorname{Let}\left(1-x^{2}\right)=f(x)
Thus f^{\prime}(x)=-2 x
\begin{array}{c} \int \frac{f^{\prime}(x)}{f(x)} d x=\int \frac{-2 x}{\left(1-x^{2}\right)} d x=\log f(x)=\log \left(1-x^{2}\right) \\ \text { I.F. }=e^{\frac{-1}{2} \log \left(1-x^{2}\right)} \\ e^{\log \left(1-x^{2}\right)^{-1 / 2}}\left(a \log b=\log b^{a}\right) \\ \qquad e^{\log \left(\frac{1}{\sqrt{1-x^{2}}}\right)} \\ \frac{1}{\sqrt{1-x^{2}}}-\left(a^{\log _{a} b}=\log b\right) \end{array}
General solution is
\begin{array}{c} y \cdot(I . F .)=\int Q \cdot(I . F .) d x+c \\ y \cdot\left(\frac{1}{\sqrt{1-x^{2}}}\right)=\int\left(\frac{a x}{\sqrt{1-x^{2}}}\right) \cdot\left(\frac{1}{\sqrt{1-x^{2}}}\right) d x+c \end{array}
Let
I=\int \frac{a x}{\left(1-x^{2}\right)^{3 / 2}} d x
\operatorname{Put}\left(1-\mathrm{x}^{2}\right)=\mathrm{t}
\begin{array}{r} -2 x d x=d t \\ x d x=\frac{-d t}{2} \\ I=\int \frac{a}{t^{3 / 2}} \cdot \frac{-d t}{2} \\ I=\frac{-a}{2} \int t^{3 / 2} d t \\ I=\frac{-a}{2} \cdot \frac{t^{-1 / 2}}{-1 / 2} \\ I=a \cdot \frac{1}{\sqrt{t}} \\ I=\frac{a}{\sqrt{1-x^{2}}} \end{array}
Substituting I in (3)
\frac{y}{\sqrt{1-x^{2}}}=\frac{a}{\sqrt{1-x^{2}}}+c
Multiplying above equation by \sqrt{1-x^{2}}
y=a+c \sqrt{1-x^{2}}