Find the (i) lengths of major axes, (ii) coordinates of the vertices

    \[\mathbf{16}{{\mathbf{x}}^{\mathbf{2}}}+\text{ }{{\mathbf{y}}^{\mathbf{2}}}=\text{ }\mathbf{16}\]

Find the (i) lengths of major axes, (ii) coordinates of the vertices

    \[\mathbf{16}{{\mathbf{x}}^{\mathbf{2}}}+\text{ }{{\mathbf{y}}^{\mathbf{2}}}=\text{ }\mathbf{16}\]

Given:

    \[\mathbf{16}{{\mathbf{x}}^{\mathbf{2}}}+\text{ }{{\mathbf{y}}^{\mathbf{2}}}=\text{ }\mathbf{16}\]

Divide by

    \[16\]

to both the sides, we get

    \[\frac{16}{16}{{x}^{2}}+\frac{1}{16}{{y}^{2}}=1\]

    \[\frac{{{x}^{2}}}{1}+\frac{1}{16}{{y}^{2}}=1\]

…(i)

Since,

    \[1\text{ }<\text{ }16\]

So, above equation is of the form,

    \[\frac{{{x}^{2}}}{{{b}^{2}}}+\frac{{{y}^{2}}}{{{a}^{2}}}=1\]

…(ii)

Comparing eq. (i) and (ii), we get

    \[\begin{array}{*{35}{l}}</strong> <strong>   {{a}^{2}}=\text{ }16\text{ }and\text{ }{{b}^{2}}=\text{ }1  \\</strong> <strong>   \Rightarrow a\text{ }=\text{ }\surd 16\text{ }and\text{ }b\text{ }=\text{ }\surd 1  \\</strong> <strong>   \Rightarrow a\text{ }=\text{ }4\text{ }and\text{ }b\text{ }=\text{ }1  \\</strong> <strong>\end{array}\]

(i) To find: Length of major axes

Clearly, a < b, therefore the major axes of the ellipse is along y axes.

∴Length of major axes =

    \[2a\]

    \[\begin{array}{*{35}{l}}</strong> <strong>   =\text{ }2\text{ }\times \text{ }4  \\</strong> <strong>   =\text{ }8\text{ }units  \\</strong> <strong>\end{array}\]

(ii) To find: Coordinates of the Vertices

Clearly, a > b

∴ Coordinate of vertices =

    \[\left( 0,\text{ }a \right)\text{ }and\text{ }\left( 0,\text{ }-a \right)\]

    \[=\text{ }\left( 0,\text{ }4 \right)\text{ }and\text{ }\left( 0,\text{ }-4 \right)\]