Find the minimum value of \mathrm{Z}=3 \mathrm{x}+5 \mathrm{y}, subject to the constraints -2 \mathrm{x}+\mathrm{y} \leq 4, \mathrm{x}+\mathrm{y} \geq 3, \mathrm{x}-2 \mathrm{y} \leq 2, \mathrm{x} \geq 0 and \mathrm{y} \geq 0 Z=3 x+5 y, subject to the constraints -2 x+y \leq 4, x+y \geq 3, x-2 y \leq 2, x \geq 0 and y \geq 0
Find the minimum value of \mathrm{Z}=3 \mathrm{x}+5 \mathrm{y}, subject to the constraints -2 \mathrm{x}+\mathrm{y} \leq 4, \mathrm{x}+\mathrm{y} \geq 3, \mathrm{x}-2 \mathrm{y} \leq 2, \mathrm{x} \geq 0 and \mathrm{y} \geq 0 Z=3 x+5 y, subject to the constraints -2 x+y \leq 4, x+y \geq 3, x-2 y \leq 2, x \geq 0 and y \geq 0

Z=3 x+5 y, subject to the constraints
-2 x+y \leq 4, x+y \geq 3, x-2 y \leq 2, x \geq 0 and y \geq 0
Draw the line -2 x+y=4, x+y=3 and x-2 y=2 and shaded region which is satisfied by above inequalities
We know that the feasible region is bounded
A(8 / 3,1 / 3), B(0,3) and C(0,4) are the corner points
Value of Z at A(8 / 3,1 / 3)

    \[Z=3 \times 8 / 3+5 \times 1 / 3=29 / 3=92 / 3\]

Value of Z at B(0,3)

    \[Z=3 \times 0+5 \times 3=15\]

Value of \mathrm{Z} at \mathrm{C}(0,4)
Hence, the maximum value of Z is 92 / 3 which occurs at A(8 / 3,1 / 3).