Find the multiplicative inverse of the following complex numbers:
(i) 1 – i
(ii) (1 + i √3)2
Find the multiplicative inverse of the following complex numbers:
(i) 1 – i
(ii) (1 + i √3)2

Solution:

(i) 1-\mathrm{i}
Given that
It is known that the multiplicative inverse of a complex number (\mathrm{Z}) is \mathrm{Z}^{-1} or 1 / \mathrm{Z} Therefore,
\begin{array}{l} Z=1-\mathrm{i} \\ Z^{-1}=\frac{1}{1-i} \end{array}
On multiplying and dividing by (1+\mathrm{i}) we obtain,
\begin{array}{l} =\frac{1}{1-i} \times \frac{1+i}{1+i} \\ =\frac{1+i}{1^{2}-(i)^{2}} \\ =\frac{1+i}{1-(-1)}\left[\text { Since, } \mathrm{i}^{2}=-1\right] \\ =\frac{1+i}{2} \end{array}
As a result, the multiplicative inverse of (1-i) is (1+i) / 2

(ii) (1+i \sqrt{3})^{2}
Given that
\begin{array}{l} (1+i \sqrt{3})^{2} \\ Z=(1+i \sqrt{3})^{2} \\ =1^{2}+(i \sqrt{3})^{2}+2(1)(i \sqrt{3}) \\ =1+3 i^{2}+2 i \sqrt{3} \\ =1+3(-1)+2 i \sqrt{3}\left[\text { since, } i^{2}=-1\right] \\ =1-3+2 i \sqrt{3} \\ =-2+2 i \sqrt{3} \end{array}
It is known that the multiplicative inverse of a complex number (\mathrm{Z}) is \mathrm{Z}^{-1} or 1 / \mathrm{Z}
Therefore,
\begin{aligned} Z=-2+2 i \sqrt{3} \\ \quad Z^{-1}=\frac{1}{-2+2 i \sqrt{3}} \end{aligned}
On multiplying and dividing by -2-2 \mathrm{i} \sqrt{3}, we obtain
\begin{array}{l} =\frac{1}{-2+2 \sqrt{3} i} \times \frac{-2-2 \sqrt{3} i}{-2-2 \sqrt{3} i} \\ =\frac{-2-2 \sqrt{3} i}{(-2)^{2}-(2 \sqrt{3} i)^{2}} \\ =\frac{-2-2 \sqrt{3} i}{4-12 i^{2}} \\ =\frac{-2-2 \sqrt{3} i}{4-12(-1)} \\ =\frac{-2-2 \sqrt{3} i}{16} \\ =\frac{-1}{8} \frac{-i \sqrt{3}}{8} \end{array}
As a result, the multiplicative inverse of (1+i \sqrt{3})^{2} is (-1-i \sqrt{3}) / 8