Find the value of m for which the line \overrightarrow r  = (\widehat i + 2\widehat k) + \lambda (2\widehat i  - m\widehat j - 3\widehat k) is parallel to the plane \overrightarrow r .(m\widehat i + 3\widehat j + \widehat k) = 4
Find the value of m for which the line \overrightarrow r  = (\widehat i + 2\widehat k) + \lambda (2\widehat i  - m\widehat j - 3\widehat k) is parallel to the plane \overrightarrow r .(m\widehat i + 3\widehat j + \widehat k) = 4

Answer:

Given equation of line,

\overrightarrow r  = (\widehat i + 2\widehat k) + \lambda (2\widehat i  - m\widehat j - 3\widehat k)

Comparing with the line \overrightarrow r  = \overrightarrow a  + \lambda \overrightarrow b,

\overrightarrow a  = \widehat i + 2\widehat k

\overrightarrow b  = 2\widehat i  - m\widehat j - 3\widehat k

Comparing with \vec{r} \cdot \vec{n}=d \Rightarrow \vec{n}=(m \hat{i}+3 \hat{j}+\hat{k})

Since the line is paralle! to the plane

b·n=0(2i^mj^3k^)·(mi^+3j^+k^)=02m3m3=0m3=0m=3

\begin{array}{l}

\Rightarrow \vec{b} \cdot \vec{n}=0 \\

\Rightarrow(2 \hat{i}-m \hat{j}-3 \hat{k}) \cdot(m \hat{i}+3 \hat{j}+\hat{k})=0 \\

\Rightarrow 2 m-3 m-3=0 \\

\Rightarrow-m-3=0 \\

\Rightarrow m=-3

\end{array}