If \mathrm{A}=\left[\begin{array}{ll}4 & 5 \\ 1 & 8\end{array}\right], show that \left(\mathrm{A}+\mathrm{A}^{\prime}\right) is symmetric
If \mathrm{A}=\left[\begin{array}{ll}4 & 5 \\ 1 & 8\end{array}\right], show that \left(\mathrm{A}+\mathrm{A}^{\prime}\right) is symmetric

Solution:

We have \left(\begin{array}{ll}4 & 5 \\ 1 & 8\end{array}\right).
The transpose of the matrix is an operation of making interchange of elements by the rule on positioned element a_{j i} shifted to new position a_{j i}.
The symmetric matrix is defined as similarity of transpose of matrix with it self. i.e, A^{T}=A.
The skew-symmetric matrix is defined as similarity of transpose of matrix with it self. i.e, A^{T}=-A.
A^{T}=\left(\begin{array}{ll} 4 & 5 \\ 1 & 8 \end{array}\right)^{T}=\left(\begin{array}{ll} 4 & 1 \\ 5 & 8 \end{array}\right)
Therefore finally we have
A+A^{T}=\left(\begin{array}{ll} 4 & 5 \\ 1 & 8 \end{array}\right)+\left(\begin{array}{ll} 4 & 1 \\ 5 & 8 \end{array}\right)=\left(\begin{array}{cc} 8 & 6 \\ 6 & 16 \end{array}\right)
\operatorname{Here}\left(A+A^{T}\right)^{T}=\left(\begin{array}{cc}8 & 6 \\ 6 & 16\end{array}\right)^{T}=\left(\begin{array}{cc}8 & 6 \\ 6 & 16\end{array}\right)=A+A^{T}
Therefore A+A^{T} is symmetric.