Let A be the set of all triangles in a plane. Show that the relation \mathrm{R}=\left\{\left(\Delta_{1}, \Delta_{2}\right): \Delta_{1} \sim \Delta_{2}\right\} is an equivalence relation on \mathrm{A}.
Let A be the set of all triangles in a plane. Show that the relation \mathrm{R}=\left\{\left(\Delta_{1}, \Delta_{2}\right): \Delta_{1} \sim \Delta_{2}\right\} is an equivalence relation on \mathrm{A}.

Solution:

Suppose \mathrm{R}=\left\{\left(\Delta 1, \Delta_{2}\right): \Delta_{1} \sim \Delta_{2}\right\} be a relation defined on A. (As given)
If \mathrm{R} is Reflexive, Symmetric and Transitive, therefore \mathrm{R} is an equivalence relation.
So now,

Reflexivity:
Suppose \Delta be an arbitrary element of A
we have,
\Delta \sim \Delta since, every triangle is similar to itself.
\Rightarrow(\Delta, \Delta) \in \mathrm{R} and \Delta \in \mathrm{A}
Therefore, R is reflexive.

Symmetric:
Suppose \Delta_{1} and \Delta_{2} \in A, such that \left(\Delta 1, \Delta_{2}\right) \in R
\begin{array}{l} \Rightarrow \Delta 1 \sim \Delta 2 \\ \Rightarrow \Delta 2 \sim \Delta_{1} \\ \Rightarrow\left(\Delta 2, \Delta_{1}\right) \in \mathrm{R} \end{array}
Therefore, \mathrm{R} is symmetric

Transitivity:
Suppose \Delta_{1}, \Delta_{2}, \Delta_{3} \in \mathrm{A} such that \left(\Delta_{1}, \Delta_{2}\right) \in \mathrm{R} and \left(\Delta_{2}, \Delta_{3}\right) \in \mathrm{R} \Rightarrow \Delta_{1} \sim \Delta_{2} and \Delta_{2} \sim \Delta_{3}
\Rightarrow \Delta_{1} \sim \Delta_{3}
\Rightarrow\left(\Delta_{1}, \Delta_{3}\right) \in \mathrm{R}
Therefore, \mathrm{R} is transitive.
As a result, \mathrm{R} is an equivalence relation.