Separation of Motion of a system of particles into motion of the centre of mass and motion about the centre of mass:
(i) Show L=L^{\prime}+R \times M V where L^{\prime}=\Sigma r^{\prime}{ }_{i} \times p_{i}^{\prime} is the angular momentum of the system about the centre of mass with velocities considered with respect to the centre of mass. Note r_{i}=r_{i}-R, rest of the notation is the standard notation used in the lesson. Note L’ and MR \times V can be said to be angular momenta, respectively, about and of the centre of mass of the system of particles.
(ii) Prove that : \mathrm{dL}^{\prime} / \mathrm{dt}=\sum \mathrm{r}_{\mathrm{i}}^{\prime} \mathrm{x} \mathrm{dp}^{\prime} / \mathrm{dt} Further prove that: \mathrm{dL}^{\prime} / \mathrm{dt}=\mathrm{T}^{\prime} \mathrm{ext} Where t’ext is the sum of all external torques acting on the system about the centre of mass. (Clue : A pply Newton’s Third Law and the definition of centre of mass. Consider that internal forces between any two particles act along the line connecting the particles.)
Separation of Motion of a system of particles into motion of the centre of mass and motion about the centre of mass:
(i) Show L=L^{\prime}+R \times M V where L^{\prime}=\Sigma r^{\prime}{ }_{i} \times p_{i}^{\prime} is the angular momentum of the system about the centre of mass with velocities considered with respect to the centre of mass. Note r_{i}=r_{i}-R, rest of the notation is the standard notation used in the lesson. Note L’ and MR \times V can be said to be angular momenta, respectively, about and of the centre of mass of the system of particles.
(ii) Prove that : \mathrm{dL}^{\prime} / \mathrm{dt}=\sum \mathrm{r}_{\mathrm{i}}^{\prime} \mathrm{x} \mathrm{dp}^{\prime} / \mathrm{dt} Further prove that: \mathrm{dL}^{\prime} / \mathrm{dt}=\mathrm{T}^{\prime} \mathrm{ext} Where t’ext is the sum of all external torques acting on the system about the centre of mass. (Clue : A pply Newton’s Third Law and the definition of centre of mass. Consider that internal forces between any two particles act along the line connecting the particles.)

Here \vec{r}_{i}=\vec{r}_{i}+\vec{R}+R \ldots

(1)

also, \vec{V}_{i}=\vec{V}_{i}+\vec{V} \ldots \ldots .

(2)

Where \vec{r}_{i}^{\overrightarrow{3}} and \vec{v}_{i}^{\overrightarrow{3}} denote the radius vector and velocity of the \mathrm{i}^{\text {th }} particle refers to the new origin as the centre of mass \mathrm{O}‘, and \vec{V} is the velocity of the centre of mass with respect to O.

 

(i) Total angular momentum of the system of particles is calculated below:

\vec{L}=\vec{r}_{i} \times \vec{p}

=\left(\vec{r}_{i}+\vec{R}\right) \times \sum_{i} m_{i}\left(\vec{V}_{i}+\vec{V}\right)

=\sum_{i}\left(\vec{R} \times m_{i} \vec{V}\right)+\sum_{i}\left(\vec{r}_{i} \times m_{i} \vec{V}_{i}\right)+\left(\sum_{i} m_{i} r_{i} \vec{i}\right) \times \vec{V}+\overrightarrow{R \times} \sum_{i} m_{i} \vec{V}_{i}

=\sum_{i}\left(\vec{R} \times m_{i} \vec{V}\right)+\sum_{i}\left(r_{i}^{\vec{H}} \times m_{i} \vec{V}_{i}\right)+\left(\sum_{i} m_{i} r_{i} \vec{i}\right) \times \vec{V}+\vec{R} \times \frac{d}{d t}\left(\sum_{i} m_{i} \vec{r}_{i}\right)

\text { However, we know } \sum_{i} m_{i} \vec{r}_{i}=0

\text { Since, } \sum_{i} m_{i} \vec{r}_{i}^{7}=\sum_{i} m_{i}\left(\vec{r}_{i}-\vec{R}\right)=M \vec{R}-M \vec{R}=0

According to the definition of centre of mass, we can write,

\sum_{i}\left(\vec{R} \times m_{i} \vec{V}\right)=\vec{R} \times M \vec{V}

Such that, \vec{L}=\vec{R} \times M \vec{V}+\sum_{i} \vec{r}_{i} \times \vec{P}_{i}

Given, \vec{L}=\sum \vec{r}_{i} \times \vec{p}_{i}

Thus, we have ; \vec{L}=\vec{R} \times M \vec{V}+\vec{L}

(ii) From previous solution, we have

\vec{L}^{\prime}=\sum \overrightarrow{r_{i}} \times \vec{P}_{i} \frac{d \vec{D}^{\prime}}{d t}=\sum \overrightarrow{r_{i}} \times \frac{d \vec{P}_{i}}{d t}+\sum \frac{d r^{7}}{d t} \times \vec{P}_{i}

=\sum \overrightarrow{r_{i}}{\vec{T}} \times \frac{d \vec{P}_{i}}{d t}

=\sum \vec{r}_{i} \times \overrightarrow{F_{i}^{e x t}}=T_{e e x t}^{\vec{t}}

Total torque can be calculated as,

=\tau_{\epsilon e x t}^{\overrightarrow{e x t}}=\sum \overrightarrow{r_{i}}{\vec{r}} \times \overrightarrow{F_{i}^{\overrightarrow{e x t}}}

=\sum\left(\vec{r}_{i}+\vec{R}\right) \times F_{i}^{\overrightarrow{e x t}}

=\tau_{e x t}^{\vec{\prime}}+T_{0}^{\overrightarrow{(e x t)}}

Where, \tau_{e x t}^{\overrightarrow{-x} t} is the net torque about the centre of mass as origin and \tau_{0}^{\vec{e} x t} is about the origin \mathrm{O}.

\tau_{e x t}=\sum \vec{r}_{i} \times F_{i}^{\overrightarrow{e x t}}

=\sum r^{\vec{r}}_{i} \times \frac{d \vec{P}_{i}}{d t}

=\frac{d}{d t} \sum\left(r_{i}{ }^{\vec{H}} \times \vec{P}_{i}\right)=\frac{d \vec{D}}{d t}

As a result, we have, \frac{d \vec{L}^{\prime}}{d t}=\tau_{\text {ext }}^{\vec{t}}