Show that the function f: R \rightarrow R: f(x)=x^{4} is neither one-one nor onto.
Show that the function f: R \rightarrow R: f(x)=x^{4} is neither one-one nor onto.

Solution:

We need to prove: function is neither one-one nor onto
It is given that: f: R \rightarrow R: f(x)=x^{4}
We have,
f(x)=x^{4}
For, f\left(x_{1}\right)=f\left(x_{2}\right)
\begin{array}{l} \Rightarrow x_{1}^{4}=x_{2}^{4} \\ \Rightarrow\left(x_{1}^{4}-x_{2}^{4}\right)=0 \\ \Rightarrow\left(x_{1}^{2}-x_{2}^{2}\right)\left(x_{1}^{2}+x_{2}^{2}\right)=0 \\ \Rightarrow\left(x_{1}-x_{2}\right)\left(x_{1}+x_{2}\right)\left(x_{1}^{2}+x_{2}^{2}\right)=0 \\ \Rightarrow x_{1}=x_{2} \text { or, } x_{1}=-x_{2} \text { or, } x_{1}^{2}=-x_{2}^{2} \end{array}
Since we are getting more than one value of x_{1} (no unique image)
\therefore f(x) is not one-one
f(x)=x^{4}
Suppose f(x)=y such that y \in R
\begin{array}{l} \Rightarrow y=x^{4} \\ \Rightarrow x=\sqrt[4]{y} \end{array}
If y=-2, as y \in R
Therefore \mathrm{x} will be undefined as we cannot place the negative value under the square root
Therefore f(x) is not onto
As a result, hence proved.