Show that the lines and do not intersect each other.
Show that the lines and do not intersect each other.

Show that the lines \frac{\mathrm{x}-1}{2}=\frac{\mathrm{y}+1}{3}=z and \frac{\mathrm{x}+1}{5}=\frac{\mathrm{y}-2}{1}, Z=2 do not intersect each other.
Answer
Given: The equations of the two lines are \frac{\mathrm{x}-1}{2}=\frac{\mathrm{y}+1}{3}=\mathrm{z} and \frac{\mathrm{x}+1}{5}=\frac{\mathrm{y}-2}{1}, \mathrm{z}=2
To Prove: the lines do not intersect each other.
Formula Used: Equation of a line is
Vector form: \overrightarrow{\vec{l}}=\vec{a}+\overrightarrow{k b}
Cartesian form: \frac{\mathrm{x}-\mathrm{x}_{1}}{\mathrm{~b}_{\mathrm{n}}}=\frac{y-\mathrm{y}_{1}}{\mathrm{~b}_{\mathrm{y}}}=\frac{\mathrm{z}-\mathrm{z}_{1}}{\mathrm{k}_{\mathrm{s}}}=\lambda
where \vec{a}=x_{1} \hat{1}+y_{1} \hat{l}+z_{1} k is a point on the line and b_{1}: b_{2}: b_{3} is the direction ratios of the line.
Proof:
Let

x13=y+13=z=λ1
\frac{x-1}{3}=\frac{y+1}{3}=z=\lambda_{1}
x+15=y2=λ2,z=2
\frac{\mathrm{x}+1}{\mathrm{5}}=\frac{\mathrm{y}-2}{\mathfrak{}}=\lambda_{2}, \mathrm{z}=2

So a point on the first line is \left(2 \lambda_{1}+1,3 \lambda_{1}-1, \lambda_{1}\right)
A point on the second line is \left(5 \lambda_{2}-1, \lambda_{2}+1,2\right)
If they intersect they should have a common point.

2λ1+1=5λ212λ15λ2=23λ11=λ2+13λ1λ2=2
\begin{array}{l}
2 \lambda_{1}+1=5 \lambda_{2}-1 \Rightarrow 2 \lambda_{1}-5 \lambda_{2}=-2 \ldots \\
3 \lambda_{1}-1=\lambda_{2}+1 \Rightarrow 3 \lambda_{1}-\lambda_{2}=2 \ldots
\end{array}

Solving (1) and (2),

13λ2=10λ2=1013
\begin{array}{l}
-13 \lambda_{2}=-10 \\
\lambda_{2}=\frac{10}{13}
\end{array}

Therefore, \lambda_{1}=\frac{33}{65}
Substituting for the z coordinate, we get
\lambda_{1}=\frac{33}{\text { กร }} and z=2
So, the lines do not intersect.