. The linear density of a vibrating string is 1.3 \times 10^{-4} \mathrm{~kg} / \mathrm{m} . \mathrm{A} transverse wave is propagating on the string and is described by the equation \mathrm{Y}=0.021 \sin (\mathrm{x}+3 \circ \mathrm{t}) where \mathrm{x} and \mathrm{y} are measured in meter and t in second. Ten sion in the string is
A \quad 0.12 \mathrm{~N}
B \quad 0.48 \mathrm{~N}
C 1.20 \mathrm{~N}
D 4.8 \mathrm{oN}
. The linear density of a vibrating string is 1.3 \times 10^{-4} \mathrm{~kg} / \mathrm{m} . \mathrm{A} transverse wave is propagating on the string and is described by the equation \mathrm{Y}=0.021 \sin (\mathrm{x}+3 \circ \mathrm{t}) where \mathrm{x} and \mathrm{y} are measured in meter and t in second. Ten sion in the string is
A \quad 0.12 \mathrm{~N}
B \quad 0.48 \mathrm{~N}
C 1.20 \mathrm{~N}
D 4.8 \mathrm{oN}

Correct option is
A 0.12 \mathrm{~N}
Linear density \mu=1.3 \times 10^{4} \mathrm{Kg} / \mathrm{m}
Wave equation y=0.021 \sin (x+30 t)
Velocity of wave \mathrm{v}=\frac{\omega}{\mathrm{k}}=\frac{30}{1}=30 \mathrm{~m} / \mathrm{s}

    \[\begin{array}{l} \text { Now } v=\sqrt{\frac{\mathrm{T}}{\mu}} \\ 30=\sqrt{\frac{\mathrm{T}}{1.3 \times 10^{4}}} \\ \mathrm{~T}=11.7 \times 10^{-2} \\ \mathrm{~T}=0.117 \mathrm{~N} \approx 0.12 \mathrm{~N} \end{array}\]