A mass ‘ $\mathrm{m}_{1}$ ‘ connected to a horizontal spring performs S.H.M. with amplitude ‘$A$’. While mass ‘ $\mathrm{m}_{1}$ ‘ is passing through mean position another mass ‘ $\mathrm{m}_{2}$ ‘ is placed on it so that both the masses move together with amplitude $\mathrm{A}_{1}$, The ratio of $\frac{\mathrm{A}_{1}}{\mathrm{~A}}$ is $\left(\mathrm{m}_{2}<\mathrm{m}_{1}\right)$
A) $\left[\frac{m_{1}}{m_{1}+m_{2}}\right]^{\frac{1}{2}}$
B) $\left[\frac{\mathrm{m}_{1}+\mathrm{m}_{2}}{\mathrm{~m}_{1}}\right]^{\frac{1}{2}}$
C) $\left[\frac{m_{2}}{m_{1}+m_{2}}\right]^{\frac{1}{2}}$
D) $\left[\frac{\mathrm{m}_{1}+\mathrm{m}_{2}}{\mathrm{~m}_{2}}\right]^{\frac{1}{2}}$
A mass ‘ $\mathrm{m}_{1}$ ‘ connected to a horizontal spring performs S.H.M. with amplitude ‘$A$’. While mass ‘ $\mathrm{m}_{1}$ ‘ is passing through mean position another mass ‘ $\mathrm{m}_{2}$ ‘ is placed on it so that both the masses move together with amplitude $\mathrm{A}_{1}$, The ratio of $\frac{\mathrm{A}_{1}}{\mathrm{~A}}$ is $\left(\mathrm{m}_{2}<\mathrm{m}_{1}\right)$
A) $\left[\frac{m_{1}}{m_{1}+m_{2}}\right]^{\frac{1}{2}}$
B) $\left[\frac{\mathrm{m}_{1}+\mathrm{m}_{2}}{\mathrm{~m}_{1}}\right]^{\frac{1}{2}}$
C) $\left[\frac{m_{2}}{m_{1}+m_{2}}\right]^{\frac{1}{2}}$
D) $\left[\frac{\mathrm{m}_{1}+\mathrm{m}_{2}}{\mathrm{~m}_{2}}\right]^{\frac{1}{2}}$

Answer is (A)
P.E of the oscillating mass is given by
$E=\frac{1}{2} m \omega x^{2}=\frac{1}{2} k x^{2} \quad \text { Where } k=m \omega^{2}$
When only black is oscillating, at $x=A$
$E=E_{\max }=\frac{1}{2} m \omega A^{2}$ and at mean position i.e. $x=0$
$\therefore \quad A \propto \frac{1}{\sqrt{\mathrm{m}}}$
$E=0$
When mass $\mathrm{m}_{2}$ is placed on top of the mass $\mathrm{m}_{1}$
Then, total mass is $\left(m_{1}+m_{2}\right)$ and $E=0$ at this point, as $x=0$.
When the combination reaches $x=A$,
Then $A_{1} \propto \frac{1}{\sqrt{m_{1}+m_{2}}}$
$\therefore \frac{\mathrm{A}_{1}}{\mathrm{~A}}=\sqrt{\frac{\mathrm{m}_{1}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}}$