RS Aggarwal

Mark the tick against the correct answer in the following: The solution set of the equation $\left|\begin{array}{ccc}3 \mathrm{x}-8 & 3 & 3 \\ 3 & 3 \mathrm{x}-8 & 3 \\ 3 & 3 & 3 \mathrm{x}-8\end{array}\right|=0$ is
A. $\left\{\frac{2}{3}, \frac{8}{3}\right\}$
B. $\left\{\frac{2}{3}, \frac{11}{3}\right\}$
C. $\left\{\frac{3}{2}, \frac{8}{3}\right\}$
D. None of these

Solution: Option(B) To find: Value of $x$ We have, $\left|\begin{array}{ccc}3 x-8 & 3 & 3 \\ 3 & 3 x-8 & 3 \\ 3 & 3 & 3 x-8\end{array}\right|=0$ Applying $\mathrm{R}_{1}...

read more

Mark the tick against the correct answer in the following: The solution set of the equation $\left|\begin{array}{ccc}\mathrm{x}-2 & 2 \mathrm{x}-3 & 3 \mathrm{x}-4 \\ \mathrm{x}-4 & 2 \mathrm{x}-9 & 3 \mathrm{x}-16 \\ \mathrm{x}-8 & 2 \mathrm{x}-27 & 2 \mathrm{x}-64\end{array}\right|=0$ is
A. $\{4\}$
B. $\{2,4\}$
C. $\{2,8\}$
D. $\{4,8\}$

Solution: Option(A) To find: Value of $x$ We have, $\left|\begin{array}{ccc}x-2 & 2 x-3 & 3 x-4 \\ x-4 & 2 x-9 & 3 x-16 \\ x-8 & 2 x-27 & 3 x-64\end{array}\right|=0$ Applying...

read more

Mark the tick against the correct answer in the following: $\left|\begin{array}{lll}\mathrm{a} & 1 & \mathrm{~b}+\mathrm{c} \\ \mathrm{b} & 1 & \mathrm{c}+\mathrm{a} \\ \mathrm{c} & 1 & \mathrm{a}+\mathrm{b}\end{array}\right|=?$
A. $a+b+c$
B. $2(a+b+c)$
C. $4 \mathrm{abc}$
D. $a^{2} b^{2} c^{2}$

Solution: Option(C) To find: Value of $\left|\begin{array}{lll}a & 1 & b+c \\ b & 1 & c+a \\ c & 1 & a+b\end{array}\right|$ We have, $\left|\begin{array}{lll}a & 1 &...

read more

Mark the tick against the correct answer in the following: $\left|\begin{array}{lll} \mathrm{bc} & \mathrm{b}+\mathrm{c} & 1 \\ \mathrm{ca} & \mathrm{c}+\mathrm{a} & 1 \\ \mathrm{ab} & \mathrm{a}+\mathrm{b} & 1 \end{array}\right|=?$
A. $(a-b)(b-c)(c-a)$
B. $-(a-b)(b-c)(c-a)$
C. $(a+b)(b+c)(c+a)$
D. None of these

Solution: Option(A) To find: Value of $\left|\begin{array}{lll}\mathrm{bc} & \mathrm{b}+\mathrm{c} & 1 \\ \mathrm{ca} & \mathrm{a}+\mathrm{c} & 1 \\ \mathrm{ab} &...

read more

Mark the tick against the correct answer in the following: $\left|\begin{array}{cc} \sin 23^{\circ} & -\sin 7^{\circ} \\ \cos 23^{\circ} & \cos 7^{\circ} \end{array}\right|=?$
A. $\frac{\sqrt{3}}{2}$
B. $\frac{1}{2}$
C. $\sin 16^{\circ}$
D. $\cos 16^{\circ}$

Solution: Option(B) To find: Value of $\left|\begin{array}{cc}\sin 23^{\circ} & -\sin 7^{\circ} \\ \cos 23^{\circ} & \cos 7^{\circ}\end{array}\right|$ Formula used: (i) $\sin (A+B)=\sin A...

read more

Using properties of determinants prove that: $\left|\begin{array}{lll}\mathrm{x}-3 & \mathrm{x}-4 & \mathrm{x}-\alpha \\ \mathrm{x}-2 & \mathrm{x}-3 & \mathrm{x}-\beta \\ \mathrm{x}-1 & \mathrm{x}-2 & \mathrm{x}-\gamma\end{array}\right|=0$, where $\alpha, \beta, \mathrm{y}$ are in AP.

Solution: Given that $\alpha, \beta, \gamma$ are in an $A P$, which means $2 \beta=\alpha+\gamma$ Operating $R_{3} \rightarrow R_{3}-2 R_{2}+R_{1}$ $\begin{array}{l} =\left|\begin{array}{ccc} x-3...

read more

Using properties of determinants prove that: $\left|\begin{array}{ccc} -\mathrm{a}\left(\mathrm{b}^{2}+\mathrm{c}^{2}-\mathrm{a}^{2}\right) & 2 \mathrm{~b}^{3} & 2 \mathrm{c}^{3} \\ 2 \mathrm{a}^{3} & -\mathrm{b}\left(\mathrm{c}^{2}+\mathrm{a}^{2}-\mathrm{b}^{2}\right) & 2 \mathrm{c}^{3} \\ 2 \mathrm{a}^{3} & \mathrm{ab}^{3} & -\mathrm{c}\left(\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}\right) \end{array}\right|=(\mathrm{abc})\left(\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}\right)^{3}$

Solution: Taking $a, b, c$ from $C_{1}, C_{2}, C_{3}$ $=a b c\left|\begin{array}{ccc} -b^{2}-c^{2}+a^{2} & 2 b^{2} & 2 c^{2} \\ 2 a^{2} & b^{2}-c^{2}-a^{2} & 2 c^{2} \\ 2 a^{2} &...

read more

Using properties of determinants prove that: $\begin{array}{l} \left|\begin{array}{ccc} (\mathrm{m}+\mathrm{n})^{2} & 1^{2} & \mathrm{mn} \\ (\mathrm{n}+1)^{2} & \mathrm{~m}^{2} & \ln \\ (1+\mathrm{m})^{2} & \mathrm{n}^{2} & \operatorname{lm} \end{array}\right|=\left(1^{2}+\mathrm{m}^{2}+\mathrm{n}^{2}\right)(1-\mathrm{m}) \\ (\mathrm{m}-\mathrm{n})(\mathrm{n}-1) \end{array}$

Solution: $\left|\begin{array}{ccc}(\mathrm{m}+\mathrm{n})^{2} & \mathrm{l}^{2} & \mathrm{mn} \\ (\mathrm{n}+\mathrm{l})^{2} & \mathrm{~m}^{2} & \mathrm{ln} \\ (1+\mathrm{m})^{2}...

read more

Using properties of determinants prove that: $\left|\begin{array}{ccc} \mathrm{x} & \mathrm{y} & \mathrm{z} \\ \mathrm{x}^{2} & \mathrm{y}^{2} & \mathrm{z}^{2} \\ \mathrm{x}^{3} & \mathrm{y}^{3} & \mathrm{z}^{3} \end{array}\right|=\mathrm{xyz}(\mathrm{x}-\mathrm{y})(\mathrm{y}-\mathrm{z})(\mathrm{z}-\mathrm{x})$

Solution: $\begin{array}{l} \left|\begin{array}{ccc} \mathrm{x} & \mathrm{y} & \mathrm{z} \\ \mathrm{x}^{2} & \mathrm{y}^{2} & \mathrm{z}^{2} \\ \mathrm{x}^{3} & \mathrm{y}^{3}...

read more

Using properties of determinants prove that: $\left|\begin{array}{ccc} \mathrm{x}+\lambda & 2 \mathrm{x} & 2 \mathrm{x} \\ 2 \mathrm{x} & \mathrm{x}+\lambda & 2 \mathrm{x} \\ 2 \mathrm{x} & 2 \mathrm{x} & \mathrm{x}+\lambda \end{array}\right|=(5 \mathrm{x}+\lambda)(\lambda-\mathrm{x})^{2}$

Solution: $\begin{array}{l} \left|\begin{array}{ccc} \mathrm{x}+\lambda & 2 \mathrm{x} & 2 \mathrm{x} \\ 2 \mathrm{x} & \mathrm{x}+\lambda & 2 \mathrm{x} \\ 2 \mathrm{x} & 2...

read more

Using properties of determinants prove that: $\left|\begin{array}{lll} \mathrm{x} & \mathrm{a} & \mathrm{a} \\ \mathrm{a} & \mathrm{x} & \mathrm{a} \\ \mathrm{a} & \mathrm{a} & \mathrm{x} \end{array}\right|=(\mathrm{x}+2 \mathrm{a})(\mathrm{x}-\mathrm{a})^{2}$

Solution: $\begin{array}{l} \left|\begin{array}{lll} \mathrm{x} & \mathrm{a} & \mathrm{a} \\ \mathrm{a} & \mathrm{x} & \mathrm{a} \\ \mathrm{a} & \mathrm{a} & \mathrm{x}...

read more

Using properties of determinants prove that: $\left|\begin{array}{ccc} \mathrm{a}+\mathrm{x} & \mathrm{y} & \mathrm{z} \\ \mathrm{x} & \mathrm{a}+\mathrm{y} & \mathrm{z} \\ \mathrm{x} & \mathrm{y} & \mathrm{a}+\mathrm{z} \end{array}\right|=\mathrm{a}^{2}(\mathrm{a}+\mathrm{x}+\mathrm{y}+\mathrm{z})$

Solution: $\begin{array}{l} \left|\begin{array}{ccc} \mathrm{a}+\mathrm{x} & \mathrm{y} & \mathrm{z} \\ \mathrm{x} & \mathrm{a}+\mathrm{y} & \mathrm{z} \\ \mathrm{x} & \mathrm{y}...

read more

Using properties of determinants prove that: $\left|\begin{array}{lll} 1 & \mathrm{~b}+\mathrm{c} & \mathrm{b}^{2}+\mathrm{c}^{2} \\ 1 & \mathrm{c}+\mathrm{a} & \mathrm{c}^{2}+\mathrm{a}^{2} \\ 1 & \mathrm{a}+\mathrm{b} & \mathrm{a}^{2}+\mathrm{b}^{2} \end{array}\right|=(\mathrm{a}-\mathrm{b})(\mathrm{b}-\mathrm{c})(\mathrm{c}-\mathrm{a})$

Solution: $\begin{array}{l} \left|\begin{array}{llll} 1 & \mathrm{~b}+\mathrm{c} & \mathrm{b}^{2}+\mathrm{c}^{2} \\ 1 & \mathrm{c}+\mathrm{a} & \mathrm{c}^{2}+\mathrm{a}^{2} \\ 1...

read more

Without expanding the determinant, prove that $\left|\begin{array}{ccc}41 & 1 & 5 \\ 79 & 7 & 9 \\ 29 & 5 & 3\end{array}\right|=0$. SINGULAR MATRIX A square matrix $A$ is said to be singular if $|A|=0$. Also, $A$ is called non singular if $|A| \neq 0$.

Solution: We know that $C_{1} \Rightarrow C_{1}-C_{2}$, would not change anything for the determinant. Applying the same in above determinant, we get $\left[\begin{array}{lll}40 & 1 & 5 \\...

read more

Mark the tick against the correct answer in the following: Range of $\operatorname{coses}^{-1} \mathrm{x}$ is
A. $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$
B. $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$
C. $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]-\{0\}$
D. None of these

Solution: Option(C) is correct. To Find: The range of $\operatorname{cosec}^{-1}(x)$ Here,the inverse function is given by $\mathrm{y}=\mathrm{f}^{-1}(x)$ The graph of the function...

read more

Mark the tick against the correct answer in the following: Range of $\tan ^{-1} x$ is
A. $\left(0, \frac{\pi}{2}\right)$
B. $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$
C. $\left[\frac{\pi}{2}, \frac{\pi}{2}\right]$
D. None of these

Solution: Option(B) is correct. To Find: The range of $\tan ^{-1} x$ Here, the inverse function is given by $y=f^{-1}(x)$ The graph of the function $y=\tan ^{-1}(x)$ can be obtained from the graph...

read more

Mark the tick against the correct answer in the following: $\tan \frac{1}{2}\left(\cos ^{-1} \frac{\sqrt{5}}{3}\right)=?$
A. $\frac{(3-\sqrt{5})}{2}$
B. $\frac{(3+\sqrt{5})}{2}$
C. $\frac{(5-\sqrt{3})}{2}$
D. $\frac{(5+\sqrt{3})}{2}$

Solution: Option(A) is correct. To Find: The value of $\tan \frac{1}{2}\left(\cos ^{-1} \frac{\sqrt{5}}{3}\right)$ Let, $x=\cos ^{-1} \frac{\sqrt{5}}{3}$ $\Rightarrow \cos x=\frac{\sqrt{5}}{3}$ Now,...

read more

If $\vec{a}=(3 \hat{i}-\hat{j})$ and $\vec{b}=(2 \hat{i}+\hat{j}-3 \hat{k})$ then express $\vec{b}$ in the form $\vec{b}=\left(\vec{b}_{1}+\vec{b}_{2}\right)$, where $\vec{b}_{1} \| \vec{a}$ and $\vec{b}_{2} \perp \vec{a}$.

Solution: $\begin{array}{l} \vec{a}=3 \hat{\imath}-\hat{\jmath} \end{array}$ $\begin{array}{l} \mathrm{I} \vec{a} \mathrm{I}=\sqrt{3^{2}+1^{2}}=\sqrt{9+1}=\sqrt{10} \\ \hat{a}=\frac{3}{\sqrt{10}}...

read more

If $\hat{a}$ and $\hat{b}$ are unit vectors inclined at an angle $\theta$ then prove that:
i. $\cos \frac{\theta}{2}=\frac{1}{2}|\hat{\mathrm{a}}+\hat{\mathrm{b}}|$
ii. $\tan \frac{\theta}{2}=\frac{|\hat{a}-\hat{b}|}{|\hat{a}+\hat{b}|}$

Solution: $\hat{a}$ and $\hat{b}$ are unit vectors inclined at an angle $\theta$ i) $\begin{aligned} &(\hat{a}+\hat{b})(\hat{a}+\hat{b})=\mathrm{I} \hat{\mathrm{a}} \mathrm{I}_{2}+\mathrm{I}...

read more