Find the equations of the planes that passes through three points.
(a) (1, 1, –1), (6, 4, –5), (–4, –2, 3)
(b) (1, 1, 0), (1, 2, 1), (–2, 2, –1)
Find the equations of the planes that passes through three points.
(a) (1, 1, –1), (6, 4, –5), (–4, –2, 3)
(b) (1, 1, 0), (1, 2, 1), (–2, 2, –1)

Solution:

(a) It is given that,
The points are $(1,1,-1),(6,4,-5),(-4,-2,3)$.
Let,
$\begin{array}{l}
=\left|\begin{array}{ccc}
1 & 1 & -1 \\
6 & 4 & -5 \\
-4 & -2 & 3
\end{array}\right| \\
=1(12-10)-1(18-20)-1(-12+16) \\
=2+2-4 \\
=0
\end{array}$
Since, the value of determinant is 0 .
As a result, the points are collinear as there will be infinite planes passing through the given 3 points.

(b) $(1,1,0),(1,2,1),(-2,2,-1)$
The given points are $(1,1,0),(1,2,1),(-2,2,-1)$.
Let,
$\begin{array}{l}
=\left|\begin{array}{ccc}
1 & 1 & 0 \\
1 & 2 & 1 \\
-2 & 2 & -1
\end{array}\right| \\
=1(-2-2)-1(-1+2) \\
=-4-1 \\
=-5 \neq 0
\end{array}$
As, there passes a unique plane from the given 3 points.
Eq. of the plane passing through the points,
$\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right),\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)$ and $\left(\mathrm{x}_{3}\right.$, $\left.\mathrm{y}_{3}, \mathrm{z}_{3}\right)$, i.e.,
$=\left|\begin{array}{lll}
x-x_{1} & y-y_{1} & z-z_{1} \\
x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\
x_{3}-x_{1} & y_{3}-y_{1} & z_{3}-z_{1}
\end{array}\right|$
Substitute the values and simplify
$\begin{array}{l}
=\left|\begin{array}{ccc}
\mathrm{x}-1 & \mathrm{y}-1 & \mathrm{z} \\
\mathrm{x}_{2}-1 & \mathrm{y}_{2}-1 & \mathrm{z}_{2} \\
\mathrm{x}_{3}-1 & \mathrm{y}_{3}-1 & \mathrm{z}_{3}
\end{array}\right| \\
=\left|\begin{array}{ccc}
\mathrm{x}-1 & \mathrm{y}-1 & \mathrm{z} \\
1-1 & 2-1 & 1 \\
-2-1 & 2-1 & -1
\end{array}\right| \\
=\left|\begin{array}{ccc}
\mathrm{x}-1 & \mathrm{y}-1 & \mathrm{z} \\
0 & 1 & 1 \\
-3 & 1 & -1
\end{array}\right| \\
=(\mathrm{x}-1)(-2)-(\mathrm{y}-1)(3)+3 \mathrm{z}=0 \\
\Rightarrow-2 \mathrm{x}+2-3 \mathrm{y}+3+3 \mathrm{z}=0 \\
=2 \mathrm{x}+3 \mathrm{y}-3 \mathrm{z}=5
\end{array}$
As a result, the required equation of the plane is $2 x+3 y-3 z=5$.