Two cells of emf $\varepsilon_{1}$ and $\varepsilon_{2}$, internal resistance $r_{1}$ and $r_{2}$, connected in parallel. The equivalent emf of the combination is- (A) $\frac{\varepsilon_{1} r_{1}+\varepsilon_{1} r_{1}}{r_{1}+r_{2}}$ (B) $\frac{\varepsilon_{1} r_{2}+\varepsilon_{2} r_{1}}{r_{1}+r_{2}}$ (C) $\sqrt{\varepsilon_{1} \times \varepsilon_{2}}$ (D) $\frac{\varepsilon_{1}+\varepsilon_{2}}{2}$
Two cells of emf $\varepsilon_{1}$ and $\varepsilon_{2}$, internal resistance $r_{1}$ and $r_{2}$, connected in parallel. The equivalent emf of the combination is- (A) $\frac{\varepsilon_{1} r_{1}+\varepsilon_{1} r_{1}}{r_{1}+r_{2}}$ (B) $\frac{\varepsilon_{1} r_{2}+\varepsilon_{2} r_{1}}{r_{1}+r_{2}}$ (C) $\sqrt{\varepsilon_{1} \times \varepsilon_{2}}$ (D) $\frac{\varepsilon_{1}+\varepsilon_{2}}{2}$

Answer: Option (B)$\frac{\varepsilon_{1} r_{2}+\varepsilon_{2} r_{1}}{r_{1}+r_{2}}$