Class 10

Which of the following statements in not true?
(a)If a point P lies inside a circle, not tangent can be drawn to the circle, passing through p.
(b) If a point P lies on the circle, then one and only one tangent can be drawn to the circle at P.
(c) If a point P lies outside the circle, then only two tangents can be drawn to the circle form P.
(d) A circle can have more than two parallel tangents. parallel to a given line.

Answer: (d) A circle can have more than two parallel tangents. parallel to a given line. Sol: A circle can have more than two parallel tangents. parallel to a given line. This statement is false...

read more

Using properties of determinants prove that: $\begin{array}{l} \left|\begin{array}{ccc} (\mathrm{m}+\mathrm{n})^{2} & 1^{2} & \mathrm{mn} \\ (\mathrm{n}+1)^{2} & \mathrm{~m}^{2} & \ln \\ (1+\mathrm{m})^{2} & \mathrm{n}^{2} & \operatorname{lm} \end{array}\right|=\left(1^{2}+\mathrm{m}^{2}+\mathrm{n}^{2}\right)(1-\mathrm{m}) \\ (\mathrm{m}-\mathrm{n})(\mathrm{n}-1) \end{array}$

Solution: $\left|\begin{array}{ccc}(\mathrm{m}+\mathrm{n})^{2} & \mathrm{l}^{2} & \mathrm{mn} \\ (\mathrm{n}+\mathrm{l})^{2} & \mathrm{~m}^{2} & \mathrm{ln} \\ (1+\mathrm{m})^{2}...

read more

Using properties of determinants prove that: $\left|\begin{array}{ccc} \mathrm{x} & \mathrm{y} & \mathrm{z} \\ \mathrm{x}^{2} & \mathrm{y}^{2} & \mathrm{z}^{2} \\ \mathrm{x}^{3} & \mathrm{y}^{3} & \mathrm{z}^{3} \end{array}\right|=\mathrm{xyz}(\mathrm{x}-\mathrm{y})(\mathrm{y}-\mathrm{z})(\mathrm{z}-\mathrm{x})$

Solution: $\begin{array}{l} \left|\begin{array}{ccc} \mathrm{x} & \mathrm{y} & \mathrm{z} \\ \mathrm{x}^{2} & \mathrm{y}^{2} & \mathrm{z}^{2} \\ \mathrm{x}^{3} & \mathrm{y}^{3}...

read more

Using properties of determinants prove that: $\left|\begin{array}{ccc} \mathrm{x}+\lambda & 2 \mathrm{x} & 2 \mathrm{x} \\ 2 \mathrm{x} & \mathrm{x}+\lambda & 2 \mathrm{x} \\ 2 \mathrm{x} & 2 \mathrm{x} & \mathrm{x}+\lambda \end{array}\right|=(5 \mathrm{x}+\lambda)(\lambda-\mathrm{x})^{2}$

Solution: $\begin{array}{l} \left|\begin{array}{ccc} \mathrm{x}+\lambda & 2 \mathrm{x} & 2 \mathrm{x} \\ 2 \mathrm{x} & \mathrm{x}+\lambda & 2 \mathrm{x} \\ 2 \mathrm{x} & 2...

read more

Using properties of determinants prove that: $\left|\begin{array}{lll} \mathrm{x} & \mathrm{a} & \mathrm{a} \\ \mathrm{a} & \mathrm{x} & \mathrm{a} \\ \mathrm{a} & \mathrm{a} & \mathrm{x} \end{array}\right|=(\mathrm{x}+2 \mathrm{a})(\mathrm{x}-\mathrm{a})^{2}$

Solution: $\begin{array}{l} \left|\begin{array}{lll} \mathrm{x} & \mathrm{a} & \mathrm{a} \\ \mathrm{a} & \mathrm{x} & \mathrm{a} \\ \mathrm{a} & \mathrm{a} & \mathrm{x}...

read more

Using properties of determinants prove that: $\left|\begin{array}{ccc} \mathrm{a}+\mathrm{x} & \mathrm{y} & \mathrm{z} \\ \mathrm{x} & \mathrm{a}+\mathrm{y} & \mathrm{z} \\ \mathrm{x} & \mathrm{y} & \mathrm{a}+\mathrm{z} \end{array}\right|=\mathrm{a}^{2}(\mathrm{a}+\mathrm{x}+\mathrm{y}+\mathrm{z})$

Solution: $\begin{array}{l} \left|\begin{array}{ccc} \mathrm{a}+\mathrm{x} & \mathrm{y} & \mathrm{z} \\ \mathrm{x} & \mathrm{a}+\mathrm{y} & \mathrm{z} \\ \mathrm{x} & \mathrm{y}...

read more

Using properties of determinants prove that: $\left|\begin{array}{lll} 1 & \mathrm{~b}+\mathrm{c} & \mathrm{b}^{2}+\mathrm{c}^{2} \\ 1 & \mathrm{c}+\mathrm{a} & \mathrm{c}^{2}+\mathrm{a}^{2} \\ 1 & \mathrm{a}+\mathrm{b} & \mathrm{a}^{2}+\mathrm{b}^{2} \end{array}\right|=(\mathrm{a}-\mathrm{b})(\mathrm{b}-\mathrm{c})(\mathrm{c}-\mathrm{a})$

Solution: $\begin{array}{l} \left|\begin{array}{llll} 1 & \mathrm{~b}+\mathrm{c} & \mathrm{b}^{2}+\mathrm{c}^{2} \\ 1 & \mathrm{c}+\mathrm{a} & \mathrm{c}^{2}+\mathrm{a}^{2} \\ 1...

read more

Without expanding the determinant, prove that $\left|\begin{array}{ccc}41 & 1 & 5 \\ 79 & 7 & 9 \\ 29 & 5 & 3\end{array}\right|=0$. SINGULAR MATRIX A square matrix $A$ is said to be singular if $|A|=0$. Also, $A$ is called non singular if $|A| \neq 0$.

Solution: We know that $C_{1} \Rightarrow C_{1}-C_{2}$, would not change anything for the determinant. Applying the same in above determinant, we get $\left[\begin{array}{lll}40 & 1 & 5 \\...

read more

Mark the tick against the correct answer in the following: Range of $\operatorname{coses}^{-1} \mathrm{x}$ is
A. $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$
B. $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$
C. $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]-\{0\}$
D. None of these

Solution: Option(C) is correct. To Find: The range of $\operatorname{cosec}^{-1}(x)$ Here,the inverse function is given by $\mathrm{y}=\mathrm{f}^{-1}(x)$ The graph of the function...

read more

Mark the tick against the correct answer in the following: Range of $\tan ^{-1} x$ is
A. $\left(0, \frac{\pi}{2}\right)$
B. $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$
C. $\left[\frac{\pi}{2}, \frac{\pi}{2}\right]$
D. None of these

Solution: Option(B) is correct. To Find: The range of $\tan ^{-1} x$ Here, the inverse function is given by $y=f^{-1}(x)$ The graph of the function $y=\tan ^{-1}(x)$ can be obtained from the graph...

read more