1 + 2 + 2^2 + … 2^n = 2n+1 – 1 for all natural numbers n.
1 + 2 + 2^2 + … 2^n = 2n+1 – 1 for all natural numbers n.

 Let P(n):

    \[1\text{ }+\text{ }2\text{ }+\text{ }{{2}^{2}}~+\text{ }\ldots \text{ }+\text{ }{{2}^{n}}~=\text{ }{{2}^{n}}{{~}^{+1}}~\text{ }1\]

, for all natural numbers n

    \[P\left( 1 \right):\text{ }1\text{ }={{2}^{0\text{ }+\text{ }1}}~\text{ }1\text{ }=\text{ }2\text{ }\text{ }1\text{ }=\text{ }1,\]

which is true.
Hence, ,P(1) is true.
Let us assume that P(n) is true for some natural number n = k.

    \[P\left( k \right):\text{ }l+2\text{ }+\text{ }{{2}^{2}}+\ldots +{{2}^{k}}~=\text{ }{{2}^{k+1}}-l\text{ }~\text{ }~\text{ }~\text{ }~\text{ }~\text{ }~\text{ }~\]

 (i)

Now, we have to prove that P(k + 1) is true.

    \[P\left( k+1 \right):\text{ }1+2\text{ }+\text{ }{{2}^{2}}+\text{ }\ldots +{{2}^{k}}~+\text{ }2k+1\]

= 2k +1 – 1 + 2k+1  [Using (i)]

    \[=\text{ }{{2.2}^{k+l}}\text{ }1\text{ }=\text{ }1\]

    \[_{=~}{{2}^{\left( k+1 \right)+1}}-1\]

Hence,

    \[P\left( k\text{ }+\text{ }1 \right)\]

is true whenever P(k) is true.
So, by the principle of mathematical induction P(n) is true for any natural number n.