Frank

The table shows the distribution of scores obtained by 160 shooters in a shooting competition. Use a graph sheet and draw an ogive for the distribution. (Take 2 cm = 10 scores on the x-axis and 2 cm = 20 shooters on the y-axis)

Scores 0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100 No. of shooters 9 13 20 26 30 22 15 10 8 7 Use your graph to estimate the following:  (i) The median.  (ii) The interquartile...

read more

A boy scored the following marks in various class tests during a term each test being marked out of 20: 15, 17, 16, 7, 10, 12, 14, 16, 19, 12, 16
(i) What are his modal marks ?
(ii) What are his median marks ?
(iii) What are his mean marks ?

Solution: (i)We arrange given marks in ascending order 7, 10, 12, 12, 14, 15, 16, 16, 16, 17, 19 16 appears maximum number of times. Hence his modal mark is 16. (ii)Here number of observations, n =...

read more

The marks of 10 students of a class in an examination arranged in ascending order are as follows: 13, 35, 43, 46, x, x +4, 55, 61,71, 80 If the median marks is 48, find the value of x. Hence, find the mode of the given data. (2017)

Solution: Given data in ascending order: 13, 35, 43, 46, x, x +4, 55, 61,71, 80 Given median = 48 Number of observations, n = 10 which is even. median = ½ ( n/2 th term + ((n/2)+1)th term) 48 = ½...

read more

The daily wages in (rupees of) 19 workers are 41, 21, 38, 27, 31, 45, 23, 26, 29, 30, 28, 25, 35, 42, 47, 53, 29, 31, 35. find :
(i) the median
(ii) lower quartile
(iii) upper quartile
(iv) inter quartile range

Solution: Arranging the observations in ascending order 21, 23, 25, 26, 27, 28, 29, 29, 30, 31, 31, 35, 35, 38, 41, 42, 45, 47, 53 Here n = 19 which is odd. (i)Median = ((n+1)/2)th term = (19+1)/2 =...

read more

(a) If a, b, c are the sides of a right triangle where c is the hypotenuse, prove that the radius r of the circle which touches the sides of the triangle is given by r = /frac (a + b – c) – (2) (b) In the given figure, PB is a tangent to a circle with center O at B. AB is a chord of length 24 cm at a distance of 5 cm from the center. If the length of the tangent is 20 cm, find the length of OP.

Solution: (a) Let the circle touch the sides BC, CA and AB of the right triangle ABC at points D, E and F respectively, where BC = a, CA = b and AB = c (as showing in the given figure). As the...

read more

(a) In the figure (i) given below, O is the center of the circle. If ∠AOC = 150°, find (i) ∠ABC (ii) ∠ADC (b) In the figure (i) given below, AC is a diameter of the given circle and ∠BCD = 75°. Calculate the size of (i) ∠ABC (ii) ∠EAF.

Solution: (a) Given, ∠AOC = 150° and AD = CD We know that an angle subtends by an arc of a circle at the center is twice the angle subtended by the same arc at any point on the remaining part of the...

read more

(a) In the figure (i) given below, M, A, B, N are points on a circle having centre O. AN and MB cut at Y. If ∠NYB = 50° and ∠YNB = 20°, find ∠MAN and the reflex angle MON. (b) In the figure (ii) given below, O is the centre of the circle. If ∠AOB = 140° and ∠OAC = 50°, find (i) ∠ACB (ii) ∠OBC (iii) ∠OAB (iv) ∠CBA

Solution (a) ∠NYB = 50°, ∠YNB = 20°. In ∆YNB, ∠NYB + ∠YNB + ∠YBN = 180o 50o + 20o + ∠YBN = 180o ∠YBN + 70o = 180o ∠YBN = 180o – 70o = 110o But ∠MAN = ∠YBN (Angles in the same segment) ∠MAN = 110o...

read more

A train travels at a certain average speed for a distanced of 54 \mathrm{~km} and then travels a distance of 63 \mathrm{km} at an average speed of 6 \mathrm{~km} / \mathrm{hr} more than the first speed. If it takes 3 hours to complete the total journey, what is its first speed?

Let the first speed of the train be $x \mathrm{~km} / \mathrm{h}$. Time taken to cover $54 \mathrm{~km}=\frac{54}{x} h .$ New speed of the train $=(x+6) \mathrm{km} / \mathrm{h}$ $\therefore$ Time...

read more

While boarding an aeroplane, a passengers got hurt. The pilot showing promptness and concern, made arrangements to hospitalize the injured and so the plane started late by 30 minutes. To reach the destination, 1500 \mathrm{~km} away, in time, the pilot increased the speed by 100 \mathrm{~km} / hour. Find the original speed of the plane. Do you appreciate the values shown by the pilot, namely promptness in providing help to the injured and his efforts to reach in time?

Let the original speed of the plane be $x \mathrm{~km} / \mathrm{h}$. $\therefore$ Actual speed of the plane $=(x+100) \mathrm{km} / \mathrm{h}$ Distance of the journey $=1500 \mathrm{~km}$ Time...

read more

In the adjoining figure, ABC is a triangle. DE is parallel to BC and AD/DB = 3/2,
(i) Determine the ratios AD/AB, DE/BC0
(ii) Prove that ∆DEF is similar to ∆CBF. Hence, find EF/FB.
(iii) What is the ratio of the areas of ∆DEF and ∆CBF?

Solution:- (i) We have to find the ratios AD/AB, DE/BC, From the question it is given that, AD/DB = 3/2 Then, DB/AD = 2/3 Now add 1 for both LHS and RHS we get, (DB/AD) + 1 = (2/3) + 1 (DB + AD)/AD...

read more

From a pack of 52 cards, a blackjack, a red queen and two black kings fell down. A card was then drawn from the remaining pack at random. Find the probability that the card drawn is
(i) a black card
(ii) a king
(iii) a red queen.

Solution: Total number of cards = 52-4 = 48 [∵4 cards fell down] So number of possible outcomes = 48 (i) Let E be the event of getting black card. There will be 23 black cards since a black jack and...

read more

A box contains 15 cards numbered 1, 2, 3,…..15 which are mixed thoroughly. A card is drawn from the box at random. Find the probability that the number on the card is :
(v) divisible by 3 or 2
(vi) a perfect square number.

(v) Let E be the event of getting the number on the card is divisible by 3 or 2 Outcomes favourable to E are {2,3,4,6,8,9,10,12,14,15} Number of favourable outcomes = 10 P(E) = 10/15 = 2/3 Hence the...

read more

A game of chance consists of spinning an arrow which comes to rest pointing at one of the numbers 1, 2, 3, 4, 5, 6, 7, 8 (shown in the adjoining figure) and these are equally likely outcomes. What is the probability that it will point at
(iii) a number greater than 2?
(iv) a number less than 9?

(iii) Let E be the event of arrow pointing a number greater than 2. Outcomes favourable to E are {3,4,5,6,7,8} Number of favourable outcomes = 6 P(E) = 6/8 = 3/4 Hence the probability of arrow...

read more