Find the image of the point $(2,-1,5)$ in the line r→=(11i^-2j^-8k^)+λ(10i^-4j^-11k^) \overrightarrow{\mathrm{r}}=(11 \hat{i}-2 \hat{j}-8 \hat{\mathrm{k}})+\lambda(10 \hat{i}-4...
Find the image of the point (0, 2, 3) in the line
Find the image of the point $(0,2,3)$ in the line $\frac{\mathrm{x}+3}{5}=\frac{\mathrm{y}-1}{2}=\frac{\mathrm{z}+4}{3}$. Answer Given: Equation of line is...
Find the coordinates of the foot of the perpendicular drawn from the point A(1, 8, 4) to the line joining the points B(0, -1, 3) and C(2, -3, -1).
Find the coordinates of the foot of the perpendicular drawn from the point $A(1,8,4)$ to the line joining the points $B(0,-1,3)$ and $C(2,-3,-1)$ Answer Given: perpendicular drawn from point...
Find the coordinates of the foot of the perpendicular drawn from the point A(1, 2, 1) to the line joining the points B(1, 4, 6) and C(5, 4, 4).
Find the coordinates of the foot of the perpendicular drawn from the point $A(1,2,1)$ to the line joining the points $B(1,4,6)$ and $C(5,4,4)$. Answer Given: perpendicular drawn from point...
Find the vector equation of a line passing through the point having the position vector
Find the vector equation of a line passing through the point having the position vector $(\hat{i}+2 \hat{j}-3 \hat{k})$ and parallel to the line joining the points with position vectors...
Find the vector equation of a line passing through the point A(3, -2, 1) and parallel to the line joining the points B(-2, 4, 2) and C(2, 3, 3). Also, find the Cartesian equations of the line.
Find the vector equation of a line passing through the point $A(3,-2,1)$ and parallel to the line joining the points $\mathrm{B}(-2,4,2)$ and $\mathrm{C}(2,3,3) .$ Also, find the Cartesian equations...
Find the vector and Cartesian equations of the line joining the points whose position vectors are
Find the vector and Cartesian equations of the line joining the points whose position vectors are $(\hat{i}-2 \hat{j}+\hat{k})$ and $(\hat{i}+3 \hat{j}-2 \hat{k})$ Answer Given: line passes through...
Find the vector and Cartesian equations of the line passing through the points A(2, -3, 0) and B(-2, 4, 3).
Find the vector and Cartesian equations of the line passing through the points $A(2,-3,0)$ and $B(-2,4,$, 3). Answer Given: line passes through the points $(2,-3,0)$ and $(-2,4,3)$ To find: equation...
Find the vector and Cartesian equations of the line passing through the points A(3, 4, -6) and B(5, -2, 7).
Find the equations of the line passing through the point $(1,-2,3)$ and parallel to the line $\frac{\mathrm{x}-6}{3}=\frac{\mathrm{y}-2}{-4}=\frac{\mathrm{Z}+7}{5}$. Also find the vector form of...
Find the coordinates of the foot of the perpendicular drawn from the point (1, 2, 3) to the line
Find the coordinates of the foot of the perpendicular drawn from the point $(1,2,3)$ to the line $\frac{\mathrm{x}-6}{3}=\frac{\mathrm{y}-7}{2}=\frac{\mathrm{z}-7}{-2}$. Also, find the length of the...
Show that the lines and do not intersect each other.
Show that the lines $\frac{\mathrm{x}-1}{2}=\frac{\mathrm{y}+1}{3}=z$ and $\frac{\mathrm{x}+1}{5}=\frac{\mathrm{y}-2}{1}, Z=2$ do not intersect each other. Answer Given: The equations of the two...
Show that the lines and intersect each other. Also, find the point of their intersection.
Show that the lines $\frac{\mathrm{x}-1}{2}=\frac{\mathrm{y}-2}{3}=\frac{\mathrm{Z}-3}{4}$ and $\frac{\mathrm{x}-4}{5}=\frac{\mathrm{y}-1}{2}=\mathrm{Z}$ intersect each other. Also, find the point...
Prove that the lines
Prove that the lines $\frac{\mathrm{x}-4}{1}=\frac{\mathrm{y}+3}{4}=\frac{\mathrm{z}+1}{7}$ and $\frac{\mathrm{x}-1}{2}=\frac{\mathrm{y}+1}{-3}=\frac{\mathrm{z}+10}{8}$ intersect each other and find...
Find the Cartesian and vector equations of the line passing through the point (1, 2, -4) and
Find the Cartesian and vector equations of the line passing through the point $(1,2,-4)$ and perpendicular to each of the lines...
Find the equations of the line passing through the point (-1, 3, -2) and perpendicular to each of the lines and
Find the equations of the line passing through the point $(-1,3,-2)$ and perpendicular to each of the lines $\frac{\mathrm{X}}{1}=\frac{\mathrm{y}}{2}=\frac{\mathrm{Z}}{3}$ and...
Find the Cartesian and vector equations of a line which passes through the point (1, 2, 3) and is parallel to the line
Find the Cartesian and vector equations of a line which passes through the point $(1,2,3)$ and is parallel to the line $\frac{-\mathrm{X}-2}{1}=\frac{\mathrm{y}+3}{7}=\frac{2 Z-6}{3}$ Answer Given:...
Find the equations of the line passing through the point (1, -2, 3) and parallel to the line Also find the vector form of this equation so obtained.
Find the equations of the line passing through the point $(1,-2,3)$ and parallel to the line $\frac{\mathrm{x}-6}{3}=\frac{\mathrm{y}-2}{-4}=\frac{\mathrm{Z}+7}{5}$. Also find the vector form of...
Find the Cartesian equations of the line which passes through the point (1, 3, -2) and is parallel to the line Also, find the vector form of the equations so obtained.
Find the Cartesian equations of the line which passes through the point $(1,3,-2)$ and is parallel to the line given by $\frac{\mathrm{x}+1}{3}=\frac{\mathrm{y}-4}{5}=\frac{\mathrm{z}+3}{-6}$. Also,...
The Cartesian equations of a line are 3x + 1 = 6y – 2 = 1 – z. Find the fixed point through which it passes, its direction ratios and also its vector equation.
The Cartesian equations of a line are $3 x+1=6 y-2=1-z$. Find the fixed point through which it passes, its direction ratios and also its vector equation. Answer Given: Cartesian equation of line are...
The Cartesian equations of a line Find the vector equation of the line.
The Cartesian equations of a line are $\frac{\mathrm{x}-3}{2}=\frac{\mathrm{y}+2}{-5}=\frac{\mathrm{Z}-6}{4}$. Find the vector equation of the line. Answer Given: Cartesian equation of line...
A line is drawn in the direction and it passes through a point with position vector Find the equations of the line in the vector as well as Cartesian forms.
A line is drawn in the direction of $(\hat{\mathrm{i}}+\hat{\mathrm{j}}-2 \hat{\mathrm{k}})$ and it passes through a point with position vector $(2 \hat{i}-\hat{j}-4 \hat{k}) .$ Find the equations...
Find the vector equation of the line passing through the point with position vector and parallel to the vector Deduce the Cartesian equations of the line.
Find the vector equation of the line passing through the point with position vector $(2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-5 \hat{\mathrm{k}})$ and parallel to the vector $(\hat{i}+3...
A line passes through the point (2, 1, -3) and is parallel to the vector Find the equations of the line in vector and Cartesian forms.
A line passes through the point $(2,1,-3)$ and is parallel to the vector $(\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})$. Find the equations of the line in vector and Cartesian forms....
A line passes through the point (3, 4, 5) and is parallel to the vector Find the equations of the line in the vector as well as Cartesian forms.
Answer Given: line passes through point $(3,4,5)$ and is parallel to $2 \hat{\imath}+2 \hat{\jmath}-3 \hat{k}$ To find: equation of line in vector and Cartesian forms Formula Used: Equation of a...