A solid disc and a ring, both of radius 10 \mathrm{~cm} are placed on a horizontal table simultaneously, with an initial angular speed equal to 10 \mathrm{~m} \mathrm{rad} \mathrm{s}^{-1}. Which of the two will start to roll earlier? The coefficient of kinetic friction is \mu_{k}=0.2 .
A solid disc and a ring, both of radius 10 \mathrm{~cm} are placed on a horizontal table simultaneously, with an initial angular speed equal to 10 \mathrm{~m} \mathrm{rad} \mathrm{s}^{-1}. Which of the two will start to roll earlier? The coefficient of kinetic friction is \mu_{k}=0.2 .

The radius of the ring and the disc is given as r = 10 cm  = 0.10 m
Initial angular speed is given as ω=10 π rad s–1
The coefficient of kinetic friction is given as μk = 0.2

According to Newton’s second, the force of friction, f = ma

So we have,

μkmg= ma

Where,

a is the acceleration produced in the disc and the ring

m is the mass

Therefore, a = μkg    …..(1)

Using the first equation of motion, we can write,
v = u + at
= 0 + μkgt
= μkgt       …..(2)

The frictional force reduces the initial angular speed by applying torque in a perpendicularly outward direction.

Torque, T = –Iα

Where α is the Angular acceleration

μkmgr = –Iα

∴ α = -μkmgr / I    …..(3)

According to the first equation of rotational motion, we can write,

ω = ω0 + αt

= ω0 + (-μkmgr / I )t    …..(4)

Rolling starts when linear velocity has the velovity of rω

∴ v = r (ω0 – μkmgrt / I )    …..(5)

On using equations (2) and (5), we have:

μkgt = r (ω0 – μkmgrt / I )

= rω0 – μkmgr2t / I    …..(6)

For the ring:

I = mr2

∴ μkgt = rω0 – μkmgr2t / mr2

= rω0 – μkgt

kgt = rω0

∴ t = rω0 / 2μkg

= ( 0.1 × 10 × 3.14) / (2 × 0.2 × 10 )  =  0.80s   ….. (7)

For the disc:

I = (1/2)mr2

∴ μkgt = rω0 – μkmgr2t / (1/2)mr2

= rω0 – 2μkgt

kgt = rω0

∴ t = rω0 / 3μkg

= ( 0.1 x 10 × 3.14) / (3 × 0.2 × 9.8 )  =  0.53s   …..(8)

The disc will start rolling before the ring as tD > tR