An electron of mass \mathrm{m} with an initial velocity \overrightarrow{\mathbf{V}}=\mathbf{V}_{0} \hat{\hat{i}}\left(\mathrm{~V}_{0}>0\right) enters an electric field \vec{E}=-E_{0} \hat{i}\left(E_{0}=\right. constant >0 ) at t=0. If \lambda_{0} is its de-Broglie wavelength initially, then its de-Broglie wavelength at time t is
(1) \lambda_{0} t
(2) \lambda_{0}\left(1+\frac{\mathrm{e} \mathrm{E}_{0}}{\mathrm{mV}_{0}} \mathrm{t}\right)
(3) \frac{\lambda_{0}}{\left(1+\frac{\mathrm{eE}_{0}}{\mathrm{mV}_{0}} \mathrm{t}\right)}
(4) \lambda_{0}
An electron of mass \mathrm{m} with an initial velocity \overrightarrow{\mathbf{V}}=\mathbf{V}_{0} \hat{\hat{i}}\left(\mathrm{~V}_{0}>0\right) enters an electric field \vec{E}=-E_{0} \hat{i}\left(E_{0}=\right. constant >0 ) at t=0. If \lambda_{0} is its de-Broglie wavelength initially, then its de-Broglie wavelength at time t is
(1) \lambda_{0} t
(2) \lambda_{0}\left(1+\frac{\mathrm{e} \mathrm{E}_{0}}{\mathrm{mV}_{0}} \mathrm{t}\right)
(3) \frac{\lambda_{0}}{\left(1+\frac{\mathrm{eE}_{0}}{\mathrm{mV}_{0}} \mathrm{t}\right)}
(4) \lambda_{0}

Answer is (3)

Initial de-broglie wavelength will be,

\lambda_0=\frac{h}{mV_0} …(i)

Acceleration of electron will be,

a=\frac{eE_0}{m}

Velocity after time t,

\mathbf{V}=\left(\mathbf{V}_{0}+\frac{\mathrm{eE}_{0}}{\mathrm{~m}} \mathrm{t}\right)

So, \lambda=\frac{h}{m V}=\frac{h}{m\left(v_{0}+\frac{e E_{0}}{m} t\right)}

=\frac{h}{m V_{0}\left[1+\frac{e E_{0}}{m V_{0}} t\right]}=\frac{\lambda_{0}}{\left[1+\frac{e E_{0}}{m V_{0}} t\right]}…(ii)

Divide (ii) by (i) we get,

\lambda=\frac{\lambda_{0}}{\left[1+\frac{\mathrm{e} \mathrm{E}_{0}}{\mathrm{~m} \mathrm{~V}_{0}} \mathrm{t}\right.}