Find the area of the segment of a circle of radius

    \[12\]

m whose corresponding sector has a central angle of

    \[{{60}^{\circ }}\]

(Use

    \[\pi =3.14\]

).
Find the area of the segment of a circle of radius

    \[12\]

m whose corresponding sector has a central angle of

    \[{{60}^{\circ }}\]

(Use

    \[\pi =3.14\]

).

Solution:

From the given information, Radius of the circle = r =

    \[12\]

cm

∴ OA = OB =

    \[12\]

cm

    \[\angle AOB={{60}^{\circ }}\]

(given)

 

As triangle OAB is an isosceles triangle, ∴ 

    \[\angle OAB=\angle OBA=\theta \]

(say)

Also, we know that Sum of interior angles of a triangle is 180°,

∴ 

    \[\theta +\theta +{{60}^{\circ }}={{180}^{\circ }}\]

    \[2\theta ={{120}^{\circ }}\]

⇒ 

    \[\theta ={{60}^{\circ }}\]

Therefore, triangle AOB is an equilateral triangle.

∴ AB = OA = OB =

    \[12\]

cm

Area of the triangle AOB of side a=

    \[(\sqrt{3}/4)\times {{a}^{2}}\]

=

    \[(\sqrt{3}/4)\times {{(12)}^{2}}\]

=

    \[(\sqrt{3}/4)\times 144\]

=

    \[36\sqrt{3}\]

    \[c{{m}^{2}}\]

=

    \[62.354\]

    \[c{{m}^{2}}\]

Now, for Central angle of the sector AOBCA = 

    \[\phi ={{60}^{\circ }}=(60\pi /180)=(\pi /3)\]

radians

Thus, we know that area of the sector AOBCA = 

    \[\frac{1}{2}{{r}^{2}}\phi \]

=

    \[\frac{1}{2}\times {{12}^{2}}\times \pi /3\]

    \[{{12}^{2}}\times (22/(7\times 6))\]

=

    \[75.36\]

    \[c{{m}^{2}}\]

Now, for Area of the segment ABCA = Area of the sector AOBCA – Area of the triangle AOB

=

    \[(75.36-62.354)\]

    \[c{{m}^{2}}\]

 =

    \[13.006\]

    \[c{{m}^{2}}\]