Find the sum of the following series:
(i) 5 + 55 + 555 + … to n terms.
(ii) 7 + 77 + 777 + … to n terms.
Find the sum of the following series:
(i) 5 + 55 + 555 + … to n terms.
(ii) 7 + 77 + 777 + … to n terms.

Solution:

(i) 5+55+555+\ldots to n terms.
Let’s take 5 as a common term therefore we obtain,
5[1+11+111+\ldots \mathrm{n} terms ]
Now multiplying and dividing by 9 we obtain,
5 / 9[9+99+999+\ldots \mathrm{n} terms ]
5 / 9\left[(10-1)+\left(10^{2}-1\right)+\left(10^{3}-1\right)+\ldots \mathrm{n}\right. terms ]
5 / 9\left[\left(10+10^{2}+10^{3}+\ldots \mathrm{n} \text { terms }\right)-\mathrm{n}\right]
Therefore the G.P is
5 / 9\left[\left(10+10^{2}+10^{3}+\ldots \mathrm{n} \text { terms }\right)-\mathrm{n}\right]
Using the formula,
The sum of GP for n terms =\mathrm{a}\left(r^{n}-1\right) /(r-1)
Where, a=10, r=10^{2} / 10=10, n=n
\begin{array}{l} a\left(r^{n}-1\right) /(r-1)= \\ \quad=\frac{5}{9}\left\{10 \times \frac{\left(10^{n}-1\right)}{10-1}-n\right\} \\ \quad=\frac{5}{9}\left\{\frac{10}{9}\left(10^{n}-1\right)-n\right\} \\ =\frac{5}{81}\left\{10^{n+1}-9 n-10\right\} \end{array}

(ii) 7+77+777+\ldots to \mathrm{n} terms.
Let’s take 7 as a common term therefore we obtain,
Now multiplying and dividing by 9 we obtain,
7 / 9[9+99+999+\ldots n terms ]
7 / 9\left[(10-1)+\left(10^{2}-1\right)+\left(10^{3}-1\right)+\ldots+\left(10^{n}-1\right)\right] 7 / 9\left[\left(10+10^{2}+10^{3}+\ldots+10^{n}\right)\right]-7 / 9[(1+1+1+\ldots to n terms )]
Therefore the terms are in G.P
Where, a=10, r=10^{2} / 10=10, n=n
Using the formula,
The sum of GP for n terms =a\left(r^{n}-1\right) /(r-1)
\begin{array}{l} 7 / 9\left[10\left(10^{n}-1\right) /(10-1)\right]-n \\ 7 / 9\left[10 / 9\left(10^{n}-1\right)-n\right] \\ 7 / 81\left[10\left(10^{n}-1\right)-n\right] \\ 7 / 81\left(10^{n+1}-9 n-10\right) \end{array}