If the sum of p terms of an A.P. is q and the sum of q terms is p, show that the sum of p + q terms is – (p + q). Also, find the sum of first p – q terms (p > q).
If the sum of p terms of an A.P. is q and the sum of q terms is p, show that the sum of p + q terms is – (p + q). Also, find the sum of first p – q terms (p > q).

Solution:

An AP’s sum of n terms is given by

{S_{n}}={\frac{n}{2}}(2a+(n-1)d)

Where the first term is ‘a’ and the common difference is ‘d’.

It is given that S_{p}=q and S_{q}=p

\Rightarrow \mathrm{S}_{\mathrm{p}}=\frac{\mathrm{p}}{2}(2 \mathrm{a}+(\mathrm{p}-1) \mathrm{d})_{\ldots 1}

It is known that S_{p}=q

\Rightarrow \mathrm{q}=\frac{\mathrm{p}}{2}(2 \mathrm{a}+(\mathrm{p}-1) \mathrm{d})

Now rearrange

\Rightarrow \frac{2 q}{p}=2 a+(p-1) d \ldots(i)

\Rightarrow S_{q}=\frac{q}{2}(2 a+(q-1) d) \ldots \ldots .2

Again we have S_{q}=p

\Rightarrow \mathrm{p}=\frac{\mathrm{q}}{2}(2 \mathrm{a}+(\mathrm{q}-1) \mathrm{d})

When we rearrange we obtain

\Rightarrow \frac{2 p}{q}=2 a+(q-1) d \ldots(i i)

Subtract eq.(i) from eq.(ii) i.e. eq.(ii) – eq.(i)

\Rightarrow \frac{2 p}{q}-\frac{2 q}{p}=(q-1) d-(p-1) d

Subtract eq.(i) from eq.(ii) i.e. eq.(ii) – eq.(i)

\Rightarrow \frac{2 p}{q}-\frac{2 q}{p}=(q-1) d-(p-1) d

When we simplify we obtain

\Rightarrow 2 \frac{p^{2}-q^{2}}{p q}=(q-1-p+1) d

Using the a^{2}-b^{2}=(a+b)(a-b) formula we obtain

\Rightarrow 2 \frac{(p+q)(p-q)}{p q}=(q-p) d

Compute and simplify now,

\Rightarrow 2 \frac{-(p+q)(q-p)}{p q}=(q-p) d

\Rightarrow-2 \frac{(p+q)}{p q}=d \ldots(i i i)

We need to show that \mathrm{S}_{\mathrm{p}+\mathrm{q}}=-(\mathrm{p}+\mathrm{q})

\mathrm{S}_{\mathrm{p}+\mathrm{q}}=\frac{\mathrm{p}+\mathrm{q}}{2}(2 a+(\mathrm{p}+\mathrm{q}-1) \mathrm{d})

Above eq. can also be re-written as

=\frac{\mathrm{p}}{2}(2 \mathrm{a}+(\mathrm{p}+\mathrm{q}-1) \mathrm{d})+\frac{\mathrm{q}}{2}(2 \mathrm{a}+(\mathrm{p}+\mathrm{q}-1) \mathrm{d})

=\frac{\mathrm{p}}{2}(2 \mathrm{a}+(\mathrm{p}-1) \mathrm{d}+\mathrm{q} \mathrm{d})+\frac{\mathrm{q}}{2}(2 \mathrm{a}+(\mathrm{q}-1) \mathrm{d}+\mathrm{pd})

=\frac{\mathrm{p}}{2}(2 \mathrm{a}+(\mathrm{p}-1) \mathrm{d})+\frac{\mathrm{pqd}}{2}+\frac{\mathrm{q}}{2}(2 \mathrm{a}+(\mathrm{q}-1) \mathrm{d})+\frac{\mathrm{qpd}}{2}

Now using the (\mathrm{m}) \text { and }(\mathrm{n})

\Rightarrow \mathrm{S}_{\mathrm{p}+\mathrm{q}}=\mathrm{S}_{p}+\mathrm{S}_{\mathrm{q}}+\mathrm{p} \mathrm{q} \mathrm{d}

=\mathrm{q}+\mathrm{p}+\mathrm{p} \mathrm{q} \mathrm{d}

From eq.(iii) substitute ‘d’ \Rightarrow S_{p+q}=q+p+p q\left(-2 \frac{(p+q)}{p q}\right)

=(p+q)-2(p+q)

=-(p+q)

We now need to find the sum of p-q terms that is S_{p-q}

\Rightarrow \mathrm{S}_{\mathrm{p}-\mathrm{q}}=\frac{\mathrm{p}-\mathrm{q}}{2}(2 \mathrm{a}+(\mathrm{p}-\mathrm{q}-1) \mathrm{d})

=\frac{\mathrm{p}}{2}(2 \mathrm{a}+(\mathrm{p}-\mathrm{q}-1) \mathrm{d})-\frac{\mathrm{q}}{2}(2 \mathrm{a}+(\mathrm{p}-\mathrm{q}-1) \mathrm{d})

The above eq. can also be re-written as

=\frac{\mathrm{p}}{2}(2 \mathrm{a}+(\mathrm{p}-1) \mathrm{d}-\mathrm{qd})-\frac{\mathrm{q}}{2}(2 \mathrm{a}+(\mathrm{p}-1) \mathrm{d}-\mathrm{q} \mathrm{d})

=\frac{\mathrm{p}}{2}(2 \mathrm{a}+(\mathrm{p}-\mathrm{q}-1) \mathrm{d})-\frac{\mathrm{q}}{2}(2 \mathrm{a}+(\mathrm{p}-\mathrm{q}-1) \mathrm{d})

The above eq. can also be re-written as

=\frac{\mathrm{p}}{2}(2 \mathrm{a}+(\mathrm{p}-1) \mathrm{d}-\mathrm{qd})-\frac{\mathrm{q}}{2}(2 \mathrm{a}+(\mathrm{p}-1) \mathrm{d}-\mathrm{qd})

=\frac{\mathrm{p}}{2}(2 \mathrm{a}+(\mathrm{p}-1) \mathrm{d})-\frac{\mathrm{pqd}}{2}-\frac{\mathrm{q}}{2}(2 \mathrm{a}+(\mathrm{p}-1) \mathrm{d})+\frac{\mathrm{q}^{2} \mathrm{~d}}{2}

Now using (\mathrm{m}) and (\mathrm{n})

=S_{p}-\frac{p q d}{2}-\frac{q}{2} \frac{2 S_{p}}{p}+\frac{q^{2} d}{2}

On substituting the value of \mathrm{S}_{\mathrm{p}}=\mathrm{q} we obtain

=q-\frac{p q d}{2}-\frac{q^{2}}{p}+\frac{q^{2} d}{2}

=q-\frac{q^{2}}{p}+\left(\frac{q^{2}-q p}{2}\right) d

From eq.(iii) substitute ‘d’

=q-\frac{q^{2}}{p}+\left(\frac{q^{2}-q p}{2}\right)\left(-2 \frac{(p+q)}{p q}\right)

Simplify and compute now

=\frac{q p-q^{2}}{p}-\left(q^{2}-q p\right)\left(\frac{p+q}{p q}\right)

=\frac{q p-q^{2}}{p}+\left(q p-q^{2}\right)\left(\frac{p+q}{p q}\right)

=\frac{q p-q^{2}}{p}+\left(q p-q^{2}\right)\left(\frac{p+q}{p q}\right)

=\frac{q p-q^{2}}{p}+\left(q p-q^{2}\right)\left(\frac{1}{p}+\frac{1}{q}\right)

=\frac{q p-q^{2}}{p}+\frac{\left(q p-q^{2}\right)}{p}+\frac{\left(q p-q^{2}\right)}{q}

\Rightarrow S_{p-q}=2 \frac{q(p-q)}{p}+p-q

As a result the sum of p-q terms is 2 \frac{q(p-q)}{p}+p-q