In an ammeter 0.2 \% of main current passes through the galvanometer. If resistance of galvanometer is \mathbf{G}, the resistance ammeter will be-
Option A \quad \frac{1}{499} G
Option B \quad \frac{499}{500} \mathrm{G}
Option C \quad \frac{1}{500} G
Option D \quad \frac{500}{499} \mathrm{G}
In an ammeter 0.2 \% of main current passes through the galvanometer. If resistance of galvanometer is \mathbf{G}, the resistance ammeter will be-
Option A \quad \frac{1}{499} G
Option B \quad \frac{499}{500} \mathrm{G}
Option C \quad \frac{1}{500} G
Option D \quad \frac{500}{499} \mathrm{G}

The correct option is C

Potential drop is same for both, so on equating,

0.002 \mathrm{I}_{0} \times \mathrm{G}=0.998 \mathrm{I}_{0} \times \mathrm{S}

\left(\frac{21}{1000}\right) \mathrm{G}=\left(\frac{9981}{1000}\right) \mathrm{S}

\Rightarrow \mathrm{S}=\frac{\mathrm{G}}{499}

Total resistan ce of ammeter R can be calculated as,

\mathrm{R}=\frac{\mathrm{SG}}{\mathrm{S}+\mathrm{G}}=\frac{\left(\frac{\mathrm{G}}{499}\right) \mathrm{F}}{\left(\frac{\mathrm{G}}{499}\right)+\mathrm{G}}=\frac{\mathrm{G}}{500}