Let A (2,2,-3), B(5,6,9) and C (2,7,9) be the vertices of a triangle. The internal bisector of the angle A meets B C at the point D. Find the coordinates of D.
Let A (2,2,-3), B(5,6,9) and C (2,7,9) be the vertices of a triangle. The internal bisector of the angle A meets B C at the point D. Find the coordinates of D.

Solution:

It is given A(2,2,-3), B(5,6,9) and C(2,7,9) are the vertices of a triangle. And it is also given that the internal bisector of the angle A meets BC at the point D.
\mathrm{AB}=\sqrt{(5-2)^{2}+(6-2)^{2}+(9-(-3))^{2}}=\sqrt{9+16+144}=\sqrt{169}=13
So now,
\mathrm{AC}=\sqrt{(2-2)^{2}+(7-2)^{2}+(9-(-3))^{2}}=\sqrt{0+25+144}=\sqrt{169}=13
\Rightarrow \mathrm{ABC} is an isosceles triangle and therefore the internal bisector of the angle \mathrm{A} meets \mathrm{BC} at its midpoint.
\Rightarrow \mathrm{D}\left(\frac{5+2}{2}, \frac{6+7}{2}, \frac{9+9}{2}\right)
\therefore The coordinates of D is \left(\frac{7}{2}, \frac{13}{2}, 9\right)