The kinetic energies of a planet in an elliptical orbit about the Sun, at positions A, B and \mathrm{C} are \mathrm{K}_{\mathrm{A}}, \mathrm{K}_{\mathrm{B}} and \mathrm{K}_{\mathrm{c}}, respectively. \mathrm{AC} is the major axis and \mathrm{SB} is perpendicular to \mathrm{AC} at the position of the Sun S as shown in the figure. Then
The kinetic energies of a planet in an elliptical orbit about the Sun, at positions A, B and \mathrm{C} are \mathrm{K}_{\mathrm{A}}, \mathrm{K}_{\mathrm{B}} and \mathrm{K}_{\mathrm{c}}, respectively. \mathrm{AC} is the major axis and \mathrm{SB} is perpendicular to \mathrm{AC} at the position of the Sun S as shown in the figure. Then

(1) \mathrm{K}_{\mathrm{B}}<\mathrm{K}_{\mathrm{A}}<\mathrm{K}_{\mathrm{C}}

(2) \mathrm{K}_{\mathrm{A}}>\mathrm{K}_{\mathrm{B}}>\mathrm{K}_{\mathrm{C}}

(3) \mathrm{K}_{\mathrm{A}}<\mathrm{K}_{\mathrm{B}}<\mathrm{K}_{\mathrm{C}}

(4) \mathrm{K}_{\mathrm{B}}>\mathrm{K}_{\mathrm{A}}>\mathrm{K}_{\mathrm{C}}

Solution:

Answer is (2)

Point A is perihelion and C is aphelion.

So, V_{\text {A }}>V_{B}>V_{c}

So, K_{A}>K_{B}>K_{C}