4.0 \mathrm{~g} of a gas occupies 22.4 liters at NTP. The specific heat capacity of the gas at constant volume is 5.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}. If the speed of sound in this gas at NTP is 952 \mathrm{~ms}^{-1}, then the heat capacity at constant pressure is (Take gas constant \mathrm{R}=8.3 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} ) (1) 8.5 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} (2) 8.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} (3) 7.5 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} (4) 7.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}
4.0 \mathrm{~g} of a gas occupies 22.4 liters at NTP. The specific heat capacity of the gas at constant volume is 5.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}. If the speed of sound in this gas at NTP is 952 \mathrm{~ms}^{-1}, then the heat capacity at constant pressure is (Take gas constant \mathrm{R}=8.3 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} ) (1) 8.5 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} (2) 8.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} (3) 7.5 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} (4) 7.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}

Solution: (2)
No. of mole of gas =1 so molar mass =4 \mathrm{~g} / \mathrm{mole}
\mathrm{V}=\sqrt{\frac{\mathrm{\gammaRT}}{\mathrm{m}}} \Rightarrow 952 \times 952=\frac{\gamma \times 3.3 \times 273}{4 \times 10^{-3}} \Rightarrow \gamma=1.6=\frac{16}{10}=\frac{8}{5}