(i) The

    \[{{15}^{th}}\]

term of an A.P. is

    \[3\]

more than twice its

    \[{{7}^{th}}\]

term. If the

    \[{{10}^{th}}\]

term of the A.P. is

    \[41\]

, find its nth term. (ii) The sum of

    \[{{5}^{th}}\]

and

    \[{{7}^{th}}\]

terms of an A.P. is

    \[52\]

and the

    \[{{10}^{th}}\]

term is

    \[46\]

. Find the A.P.
(i) The

    \[{{15}^{th}}\]

term of an A.P. is

    \[3\]

more than twice its

    \[{{7}^{th}}\]

term. If the

    \[{{10}^{th}}\]

term of the A.P. is

    \[41\]

, find its nth term. (ii) The sum of

    \[{{5}^{th}}\]

and

    \[{{7}^{th}}\]

terms of an A.P. is

    \[52\]

and the

    \[{{10}^{th}}\]

term is

    \[46\]

. Find the A.P.

From the question it I s given that,

    \[{{T}_{10}}~=\text{ }41\]

    \[{{T}_{10}}~=\text{ }a\text{ }+\text{ }9d\text{ }=\text{ }41\]

… [equation (i)]

    \[\begin{array}{*{35}{l}} {{T}_{15}}~=\text{ }a\text{ }+\text{ }14d\text{ }=\text{ }2{{T}_{7}}~+\text{ }3  \\ =\text{ }a\text{ }+\text{ }14d\text{ }=\text{ }2\left( a\text{ }+\text{ }6d \right)\text{ }+\text{ }3  \\ =\text{ }a\text{ }+\text{ }14d\text{ }=\text{ }2a\text{ }+\text{ }12\text{ }d\text{ }+\text{ }3  \\ -3\text{ }=\text{ }2a\text{ }\text{ }a\text{ }+\text{ }12d\text{ }\text{ }14d  \\ \end{array}\]

    \[a\text{ }\text{ }2d\text{ }=\text{ }-3\]

… [equation (ii)]

Now, subtracting equation (ii) from (i), we get,

    \[\begin{array}{*{35}{l}} \left( a\text{ }+\text{ }9d \right)\text{ }\text{ }\left( a\text{ }\text{ }2d \right)\text{ }=\text{ }41\text{ }\text{ }\left( -3 \right)  \\ a\text{ }+\text{ }9d\text{ }\text{ }a\text{ }+\text{ }2d\text{ }=\text{ }41\text{ }+\text{ }3  \\ 11d\text{ }=\text{ }44  \\ d\text{ }=\text{ }44/11  \\ d\text{ }=\text{ }4  \\ \end{array}\]

Then, substitute the value of d is equation (i) to find a,

    \[\begin{array}{*{35}{l}} a\text{ }+\text{ }9\left( 4 \right)\text{ }=\text{ }41  \\ a\text{ }+\text{ }36\text{ }=\text{ }41  \\ a\text{ }=\text{ }41\text{ }\text{ }36  \\ a\text{ }=\text{ }5  \\ \end{array}\]

Therefore, nth term =

    \[{{T}_{n}}~=\text{ }a\text{ }+\text{ }\left( n\text{ }\text{ }1 \right)d\]

    \[\begin{array}{*{35}{l}}</strong> <strong>   =\text{ }5\text{ }+\text{ }\left( n\text{ }\text{ }1 \right)4  \\</strong> <strong>   =\text{ }5\text{ }+\text{ }4n\text{ }\text{ }4  \\</strong> <strong>   =\text{ }1\text{ }+\text{ }4n  \\</strong> <strong>\end{array}\]

(ii) The sum of

    \[{{5}^{th}}\]

 and

    \[{{7}^{th}}\]

 terms of an A.P. is

    \[52\]

and the

    \[{{10}^{th}}\]

 term is

    \[46\]

. Find the A.P.

Solution:-

From the question it is given that,

a5 + a7 = 52

(a + 4d) + (a + 6d) = 52

a + 4d + a + 6d = 52

2a + 10d = 52

Divide both the side by

    \[2\]

we get,

    \[a\text{ }+\text{ }5d\text{ }=\text{ }26\]

… equation (i)

Given,

    \[{{a}_{10}}~=\text{ }a\text{ }+\text{ }9d\text{ }=\text{ }46\]

    \[a\text{ }+\text{ }9d\text{ }=\text{ }46\]

… equation (ii)

Now subtracting equation (i) from equation (ii),

    \[\begin{array}{*{35}{l}} \left( a\text{ }+\text{ }9d \right)\text{ }\text{ }\left( a\text{ }+\text{ }5d \right)\text{ }=\text{ }46\text{ }\text{ }26  \\ a\text{ }+\text{ }9d\text{ }\text{ }a\text{ }\text{ }5d\text{ }=\text{ }20  \\ 4d\text{ }=\text{ }20  \\ d\text{ }=\text{ }20/4  \\ d\text{ }=\text{ }5  \\ \end{array}\]

Substitute the value of d in equation (i) to find out a,

    \[\begin{array}{*{35}{l}} a\text{ }+\text{ }5d\text{ }=\text{ }26  \\ a\text{ }+\text{ }5\left( 5 \right)\text{ }=\text{ }26  \\ a\text{ }+\text{ }25\text{ }=\text{ }26  \\ a\text{ }=\text{ }26\text{ }\text{ }25  \\ a\text{ }=\text{ }1  \\ \end{array}\]

Then,

    \[\begin{array}{*{35}{l}} {{a}_{2}}~=\text{ }a\text{ }+\text{ }d  \\ =\text{ }1\text{ }+\text{ }5\text{ }=\text{ }6  \\ {{a}_{3}}~=\text{ }{{a}_{2}}~+\text{ }d  \\ =\text{ }6\text{ }+\text{ }5  \\ =\text{ }11  \\ \end{array}\]

    \[\begin{array}{*{35}{l}} {{a}_{4}}~=\text{ }{{a}_{3}}~+\text{ }d  \\ =\text{ }11\text{ }+\text{ }5  \\ =\text{ }16  \\ \end{array}\]

Therefore,

    \[1,\text{ }6,\text{ }11,\text{ }16,\ldots \]

are A.P.