Find the adjoint of each of the following matrices:
(i) \left[\begin{array}{ll}\cos \alpha & \sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]
(ii)\left[\begin{array}{cc}1 & \tan \frac{\alpha}{2} \\ -\tan \frac{\alpha}{2} & 1\end{array}\right] Verify that (\operatorname{adj} A) A=|A| I=A(\operatorname{adj} A) for the above matrices.
Find the adjoint of each of the following matrices:
(i) \left[\begin{array}{ll}\cos \alpha & \sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]
(ii)\left[\begin{array}{cc}1 & \tan \frac{\alpha}{2} \\ -\tan \frac{\alpha}{2} & 1\end{array}\right] Verify that (\operatorname{adj} A) A=|A| I=A(\operatorname{adj} A) for the above matrices.

Solution:

(i) Suppose

A=\left[\begin{array}{ll}\cos \alpha & \sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]

Therefore cofactors of A are

C_{11}=\cos \alpha

C_{12}=-\sin \alpha

C_{21}=-\sin \alpha

C_{22}=\cos \alpha

It is known that, \operatorname{adj} A=\left[\begin{array}{ll}C_{11} & C_{12} \\ C_{21} & C_{22}\end{array}\right]^{T}

(\operatorname{adj} A)=\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]^{T}

=\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]

Now, \left(\operatorname{adj}\right. A) A=\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]\left[\begin{array}{cc}\cos \alpha & \sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]

=\left[\begin{array}{cc}-\sin ^{2} \alpha+\cos ^{2} \alpha & \cos \alpha \cdot \sin \alpha-\sin \alpha \cdot \cos \alpha \\ -\cos \alpha \sin \alpha+\sin \alpha \cos \alpha & -\sin ^{2} \alpha+\cos ^{2} \alpha\end{array}\right]

\left(\right. adj A) A=\left[\begin{array}{cc}\cos 2 \alpha & 0 \\ 0 & \cos 2 \alpha\end{array}\right]

And, |\mathrm{A}| \mathrm{I}=\left|\begin{array}{ll}\cos \alpha & \sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right|\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]

=\left(\cos ^{2} \alpha-\sin ^{2} \alpha\right)\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]

=\left[\begin{array}{cc}\cos ^{2} \alpha-\sin ^{2} \alpha & 0 \\ 0 & \cos ^{2} \alpha-\sin ^{2} \alpha\end{array}\right]

Adjoint and Inverse of a Matrix

=\left[\begin{array}{cc}\cos 2 \alpha & 0 \\ 0 & \cos 2 \alpha\end{array}\right]

Also, A( adj A)

=\left[\begin{array}{cc}\cos \alpha & \sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]=\left[\begin{array}{cc}\cos ^{2} \alpha-\sin ^{2} \alpha & 0 \\ 0 & \cos ^{2} \alpha-\sin ^{2} \alpha\end{array}\right]

=\left[\begin{array}{cc}\cos 2 \alpha & 0 \\ 0 & \cos 2 \alpha\end{array}\right]

As a result, (\operatorname{adj} A) A=|A| l=A(\operatorname{adj} A)

(ii) Suppose

A=\left[\begin{array}{cc}1 & \tan \frac{\alpha}{2} \\ -\tan \frac{\alpha}{2} & 1\end{array}\right]

Therefore cofactors of A are

\mathrm{C}_{11}=1

C_{12}=\tan \alpha / 2

C_{21}=-\tan \alpha / 2

C_{22}=1

It is known that, \operatorname{adj} \mathrm{A}=\left[\begin{array}{ll}\mathrm{C}_{11} & \mathrm{C}_{12} \\ \mathrm{C}_{21} & \mathrm{C}_{22}\end{array}\right]^{\mathrm{T}}

(\operatorname{adj} A)=\left[\begin{array}{cc}1 & \tan \frac{\alpha}{2} \\ -\tan \frac{\alpha}{2} & 1\end{array}\right]^{\mathrm{T}}

=\left[\begin{array}{cc}1 & -\tan \frac{\alpha}{2} \\ \tan \frac{\alpha}{2} & 1\end{array}\right]

Now, (\operatorname{adj} A) \mathrm{A}=\left[\begin{array}{cc}1 & -\tan \frac{\alpha}{2} \\ \tan \frac{\alpha}{2} & 1\end{array}\right]\left[\begin{array}{cc}1 & \tan \frac{\alpha}{2} \\ -\tan \frac{\alpha}{2} & 1\end{array}\right]

Adjoint and Inverse of a Matrix

=\left[\begin{array}{cc}1+\tan ^{2} \frac{\alpha}{2} & \tan \frac{\alpha}{2}-\tan \frac{\alpha}{2} \\ \tan \frac{\alpha}{2}-\tan \frac{\alpha}{2} & 1+\tan ^{2} \frac{\alpha}{2}\end{array}\right]

(\operatorname{adj} A) A=\left[\begin{array}{cc}1+\tan ^{2} \frac{\alpha}{2} & 0 \\ 0 & 1+\tan ^{2} \frac{\alpha}{2}\end{array}\right]

And, |A| .|=| \begin{array}{cc}1 & \tan \frac{\alpha}{2} \\ -\tan \frac{\alpha}{2} & 1\end{array} \mid\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left(1+\tan ^{2} \frac{\alpha}{2}\right)\left[\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right]

=\left[\begin{array}{cc}1+\tan ^{2} \frac{\alpha}{2} & 0 \\ 0 & 1+\tan ^{2} \frac{\alpha}{2}\end{array}\right]

Also, A(\operatorname{adi} A)=\left[\begin{array}{cc}1 & \tan \frac{\alpha}{2} \\ -\tan \frac{\alpha}{2} & 1\end{array}\right]\left[\begin{array}{cc}1 & -\tan \frac{\alpha}{2} \\ \tan \frac{\alpha}{2} & 1\end{array}\right]

=\left[\begin{array}{cc}1+\tan ^{2} \frac{\alpha}{2} & \tan \frac{\alpha}{2}-\tan \frac{\alpha}{2} \\ \tan \frac{\alpha}{2}-\tan \frac{\alpha}{2} & 1+\tan ^{2} \frac{\alpha}{2}\end{array}\right]

=\left[\begin{array}{cc}1+\tan ^{2} \frac{\alpha}{2} & 0 \\ 0 & 1+\tan ^{2} \frac{\alpha}{2}\end{array}\right]

As a result, (\operatorname{adj} A) A=|A| l=A(\operatorname{adj} A)