Find the area of the circle 4x^{2}+4y^{2}=9 which is interior to the parabola x^{2}=4y.
Find the area of the circle 4x^{2}+4y^{2}=9 which is interior to the parabola x^{2}=4y.

Solution:

Required area is represented by the shaded area OBCDO

On solving the given equation of circle, 4 x^{2}+4 y^{2}=9, and parabola, x^{2}=4 y, we get \mathrm{B}\left(\sqrt{2}, \frac{1}{2}\right) and \mathrm{D}\left(-\sqrt{2}, \frac{1}{2}\right)
It is observed that the area required is symmetrical about y-axis.
\therefore Area \mathrm{OBCDO}=2 \times Area \mathrm{OBCO}
We draw BM perpendicular to OA.
So, the coordinates of \mathrm{M} are ^{(\sqrt{2}, 0)} .
As a result, Area of OBCO = Area of OMBCO – Area of OMBO
\begin{array}{l} =\int_{0}^{\sqrt{2}} \sqrt{\frac{\left(9-4 x^{2}\right)}{4}} d x-\int_{0}^{\sqrt{2}} \sqrt{\frac{x^{2}}{4}} d x \\ =\frac{1}{2} \int_{0}^{\sqrt{2}} \sqrt{9-4 x^{2}} d x-\frac{1}{4} \int_{0}^{\sqrt{2}} x^{2} d x \\ =\frac{1}{4}\left[x \sqrt{9-4 x^{2}}+\frac{9}{2} \sin ^{-1} \frac{2 x}{3}\right]_{0}^{\sqrt{2}}-\frac{1}{4}\left[\frac{x^{3}}{3}\right]_{0}^{\sqrt{2}} \\ =\frac{1}{4}\left[\sqrt{2} \sqrt{9-8}+\frac{9}{2} \sin ^{-1} \frac{2 \sqrt{2}}{3}\right]-\frac{1}{12}(\sqrt{2})^{3} \\ =\frac{\sqrt{2}}{4}+\frac{9}{8} \sin ^{-1} \frac{2 \sqrt{2}}{3}-\frac{\sqrt{2}}{6} \\ =\frac{\sqrt{2}}{12}+\frac{9}{8} \sin ^{-1} \frac{2 \sqrt{2}}{3} \\ =\frac{1}{2}\left(\frac{\sqrt{2}}{6}+\frac{9}{4} \sin ^{-1} \frac{2 \sqrt{2}}{3}\right) \end{array}
As a result, the required area OBCDO is
\left(2 \times \frac{1}{2}\left[\frac{\sqrt{2}}{6}+\frac{9}{4} \sin ^{-1} \frac{2 \sqrt{2}}{3}\right]\right)=\left[\frac{\sqrt{2}}{6}+\frac{9}{4} \sin ^{-1} \frac{2 \sqrt{2}}{3}\right]_{\text {units }}