Find the area of \triangle \mathrm{ABC} with vertices \mathrm{A}(0,-1), \mathrm{B}(2,1) and C(0,3). Also, find the area of the triangle formed by joining the midpoints of its sides. Show that the ratio of the areas of two triangles is 4: 1
Find the area of \triangle \mathrm{ABC} with vertices \mathrm{A}(0,-1), \mathrm{B}(2,1) and C(0,3). Also, find the area of the triangle formed by joining the midpoints of its sides. Show that the ratio of the areas of two triangles is 4: 1

Let A\left(x_{1}=0, y_{1}=-1\right), B\left(x_{2}=2, y_{2}=1\right) and C\left(x_{3}=0, y_{3}=3\right) be the given points.

=> \text { Area }(\Delta \mathrm{ABC})=\frac{1}{2}\left[\mathrm{x}_{1}\left(\mathrm{y}_{2}-\mathrm{y}_{3}\right)+\mathrm{x}_{2}\left(\mathrm{y}_{3}-\mathrm{y}_{1}\right)+\mathrm{x}_{3}\left(\mathrm{y}_{1}-\mathrm{y}_{2}\right)\right]

=\frac{1}{2}[0(1-3)+2(3+1)+0(-1-1)]

=\frac{1}{2} \times 8=4 sq. units

=> the area of the triangle \triangle \mathrm{ABC} is 4 sq. units

Let D\left(a_{1}, b_{1}\right), E\left(a_{2}, b_{2}\right) and F\left(a_{3}, b_{3}\right) be the midpoints of A B, B C and A C respectively Then

a_{1}=\frac{0+2}{2}=1 \quad b_{1}=\frac{-1+1}{2}=0

\begin{array}{ll} a_{2}=\frac{2+0}{2}=1 & b_{2}=\frac{1+3}{2}=2 \\ a_{3}=\frac{0+0}{2}=0 & b_{3}=\frac{-1+3}{2}=1 \end{array}

=> the coordinates of D, E and Fare D\left(a_{1}=1, b_{1}=0\right), E\left(a_{2}=1, b_{2}=2\right) and

\mathrm{F}\left(\mathrm{a}_{3}=0, \mathrm{~b}_{3}=1\right) . Now

Area (\Delta D E F)=\frac{1}{2}\left[a_{1}\left(b_{2}-b_{2}\right)+a_{2}\left(b_{3}-b_{1}\right)+a_{3}\left(b_{1}-b_{2}\right)\right]

=\frac{1}{2}[1(2-1)+1(1-0)+0(0-2)]

=\frac{1}{2}[1+1+0]=1 sq. unit

=> the area of the triangle \triangle \mathrm{DEF} is 1 sq. unit.

Therefore, \triangle \mathrm{ABC}: \Delta \mathrm{DEF}=4: 1