Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.

    \[{{\mathbf{x}}^{\mathbf{2}}}/\mathbf{16}\text{ }+\text{ }{{\mathbf{y}}^{\mathbf{2}}}/\mathbf{9}\text{ }=\text{ }\mathbf{1}\]

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.

    \[{{\mathbf{x}}^{\mathbf{2}}}/\mathbf{16}\text{ }+\text{ }{{\mathbf{y}}^{\mathbf{2}}}/\mathbf{9}\text{ }=\text{ }\mathbf{1}\]

Given:

The condition is

    \[{{x}^{2}}/16\text{ }+\text{ }{{y}^{2}}/9\text{ }=\text{ }1\text{ }or\text{ }{{x}^{2}}/{{4}^{2}}~+\text{ }{{y}^{2}}/{{3}^{2}}~=\text{ }1\]

Here, the denominator of

    \[{{x}^{2}}/16\]

is more noteworthy than the denominator of

    \[{{y}^{2}}/9.\]

Thus, the significant pivot is along the x-axis, while the minor hub is along they-axis.

On contrasting the given condition and

    \[{{x}^{2}}/{{a}^{2}}~+\text{ }{{y}^{2}}/{{b}^{2}}~=\text{ }1\]

, we get

    \[a\text{ }=\text{ }4\text{ }and\text{ }b\text{ }=\text{ }3.\]

    \[c\text{ }=\text{ }\surd ({{a}^{2}}~\text{ }{{b}^{2}})\]

    \[=\text{ }\surd \left( 16-9 \right)\]

    \[=\text{ }\surd 7\]

Then, at that point,

The directions of the foci are

    \[\left( \surd 7,\text{ }0 \right)\text{ }and\text{ }\left( -\surd 7,\text{ }0 \right).\]

The directions of the vertices are

    \[\left( 4,\text{ }0 \right)\text{ }and\text{ }\left( -4,\text{ }0 \right)\]

Length of major axis

    \[=\text{ }2a\text{ }=\text{ }2\text{ }\left( 4 \right)\text{ }=\text{ }8\]

Length of minor axis

    \[=\text{ }2b\text{ }=\text{ }2\text{ }\left( 3 \right)\text{ }=\text{ }6\]

Eccentricity,

    \[e\text{ }=\text{ }c/a~=\text{ }\surd 7/4\]

Length of latus rectum

    \[=\text{ }2{{b}^{2}}/a\text{ }=\text{ }(2\times {{3}^{2}})/4\text{ }=\text{ }\left( 2\times 9 \right)/4\text{ }=\text{ }18/4\text{ }=\text{ }9/2\]