Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.

    \[{{\mathbf{x}}^{\mathbf{2}}}/\mathbf{25}\text{ }+\text{ }{{\mathbf{y}}^{\mathbf{2}}}/\mathbf{100}\text{ }=\text{ }\mathbf{1}\]

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.

    \[{{\mathbf{x}}^{\mathbf{2}}}/\mathbf{25}\text{ }+\text{ }{{\mathbf{y}}^{\mathbf{2}}}/\mathbf{100}\text{ }=\text{ }\mathbf{1}\]

Given:

The condition is

    \[{{x}^{2}}/25\text{ }+\text{ }{{y}^{2}}/100\text{ }=\text{ }1\]

Here, the denominator of

    \[{{y}^{2}}/100\]

is more noteworthy than the denominator of

    \[{{x}^{2}}/25\]

.

Thus, the significant pivot is along they-axis, while the minor hub is along thex-axis.

On contrasting the given condition and

    \[~{{x}^{2}}/{{b}^{2}}~+\text{ }{{y}^{2}}/{{a}^{2}}~=\text{ }1\]

, we get

    \[b\text{ }=\text{ }5\text{ }and\text{ }a\text{ }=10.\]

    \[c\text{ }=\text{ }\surd ({{a}^{2}}~\text{ }{{b}^{2}})\]

    \[=\text{ }\surd \left( 100-25 \right)\]

    \[=\text{ }\surd 75\]

    \[=\text{ }5\surd 3\]

Then, at that point,

The directions of the foci are

    \[\left( 0,\text{ }5\surd 3 \right)\text{ }and\text{ }\left( 0,\text{ }-5\surd 3 \right).\]

The directions of the vertices are

    \[\left( 0,\text{ }\surd 10 \right)\text{ }and\text{ }\left( 0,\text{ }-\surd 10 \right).\]

Length of major axis 

    \[=\text{ }2a\text{ }=\text{ }2\text{ }\left( 10 \right)\text{ }=\text{ }20\]

Length of minor axis 

    \[=\text{ }2b\text{ }=\text{ }2\text{ }\left( 5 \right)\text{ }=\text{ }10\]

Eccentricity,

    \[e\text{ }=\text{ }c/a~=\text{ }5\surd 3/10\text{ }=\text{ }\surd 3/2\]

Length of latus rectum

    \[=\text{ }2{{b}^{2}}/a\text{ }=\text{ }(2\times {{5}^{2}})/10\text{ }=\text{ }\left( 2\times 25 \right)/10\text{ }=\text{ }5\]