Find the equation of the circle (iii) Which touches both the axes and passes through the point (2, 1). (iv) Passing through the origin, radius 17 and ordinate of the centre is – 15.
Find the equation of the circle (iii) Which touches both the axes and passes through the point (2, 1). (iv) Passing through the origin, radius 17 and ordinate of the centre is – 15.

(iii) 

Let the circle touches the x-axis at the point (a, 0) and y-axis at the point (0, a).

Then the centre of the circle is (a, a) and radius is a.

=> (x – p)2 + (y – q)2 = r2

substituting the values we get

(x – a)2 + (y – a)2 = a2 … (1)

equation (1) passes through P (2, 1)

substituting the values we get

    \[\begin{array}{*{35}{l}} {{\left( 2\text{ }-\text{ }a \right)}^{2}}~+\text{ }{{\left( 1\text{ }-\text{ }a \right)}^{2}}~=\text{ }{{a}^{2}}  \\ 4\text{ }-\text{ }4a\text{ }+\text{ }{{a}^{2}}~+\text{ }1\text{ }-\text{ }2a\text{ }+\text{ }{{a}^{2}}~=\text{ }{{a}^{2}}  \\ 5\text{ }-\text{ }6a\text{ }+\text{ }{{a}^{2}}~=\text{ }0  \\ \left( a\text{ }-\text{ }5 \right)\text{ }\left( a\text{ }-\text{ }1 \right)\text{ }=\text{ }0  \\ So,\text{ }a\text{ }=\text{ }5\text{ }or\text{ }1  \\ \end{array}\]

Case (i)

As, the centre at (5, 5) and having radius 5 units.

As, the equation of the circle with centre (p, q) and having radius ‘r’ is given by: (x – p)2 + (y – q)2 = r2

Now by substituting the values in the equation we get

    \[\begin{array}{*{35}{l}} {{\left( x\text{ }-\text{ }5 \right)}^{2}}~+\text{ }{{\left( y\text{ }-\text{ }5 \right)}^{2}}~=\text{ }{{5}^{2}}  \\ {{x}^{2}}~-\text{ }10x\text{ }+\text{ }25\text{ }+\text{ }{{y}^{2}}~-\text{ }10y\text{ }+\text{ }25\text{ }=\text{ }25  \\ {{x}^{2}}~+\text{ }{{y}^{2}}~-\text{ }10x\text{ }-\text{ }10y\text{ }+\text{ }25\text{ }=\text{ }0.  \\ \end{array}\]

∴ The equation of the circle is x2 + y2 – 10x – 10y + 25 = 0.

Case (ii)

Since, the centre at (1, 1) and having a radius 1 unit.

the equation of the circle with centre (p, q) and having radius ‘r’ is given by: (x – p)2 + (y – q)2 = r2

substituting the values in the equation we get

    \[\begin{array}{*{35}{l}} {{\left( x\text{ }-\text{ }1 \right)}^{2}}~+\text{ }{{\left( y\text{ }-\text{ }1 \right)}^{2}}~=\text{ }{{1}^{2}}  \\ {{x}^{2}}~-\text{ }2x\text{ }+\text{ }1\text{ }+\text{ }{{y}^{2}}~-\text{ }2y\text{ }+\text{ }1\text{ }=\text{ }1  \\ {{x}^{2}}~+\text{ }{{y}^{2}}~-\text{ }2x\text{ }-\text{ }2y\text{ }+\text{ }1\text{ }=\text{ }0  \\ \end{array}\]

∴ The equation of the circle is x2 + y2 – 2x – 2y + 1 = 0.

 

(iv) Passing through the origin, radius 17 and ordinate of the centre is – 15.

Let us assume the abscissa as ‘a’

We have a circle with centre (a, – 15) and passing through the point (0, 0) and having radius 17.

We know that the radius of the circle is the distance between the centre and any point on the radius. So, we find the radius of the circle.

By using the distance formula,

RD Sharma Solutions for Class 11 Maths Chapter 24 – The Circle - image 6

    \[\begin{array}{*{35}{l}} {{17}^{2}}~=\text{ }{{a}^{2}}~+\text{ }{{\left( -15 \right)}^{2}}  \\ 289\text{ }=\text{ }{{a}^{2}}~+\text{ }225  \\ {{a}^{2}}~=\text{ }64  \\ \left| a \right|\text{ }=\text{ }\surd 64  \\ \left| a \right|\text{ }=\text{ }8  \\ a\text{ }=\text{ }\pm 8\text{ }\ldots .\text{ }\left( 1 \right)  \\ \end{array}\]

the centre at (±8, – 15) and having radius 17 units.

Since, the equation of the circle with centre (p, q) and having radius ‘r’ is given by: (x – p)2 + (y – q)2 = r2

Now by substituting the values in the equation, we get

    \[\begin{array}{*{35}{l}} {{\left( x\text{ }\pm \text{ }8 \right)}^{2}}~+\text{ }{{\left( y\text{ }-\text{ }15 \right)}^{2}}~=\text{ }{{17}^{2}}  \\ {{x}^{2~}}\pm \text{ }16x\text{ }+\text{ }64\text{ }+\text{ }{{y}^{2}}~-\text{ }30y\text{ }+\text{ }225\text{ }=\text{ }289  \\ {{x}^{2}}~+\text{ }{{y}^{2~}}\pm \text{ }16x\text{ }-\text{ }30y\text{ }=\text{ }0.  \\ \end{array}\]

∴ The equation of the circle is x2 + y± 16x – 30y = 0.