Find the equation of the straight line passing through the point of intersection of 2x + 3y + 1 = 0 and 3x – 5y – 5 = 0 and equally inclined to the axes.
Find the equation of the straight line passing through the point of intersection of 2x + 3y + 1 = 0 and 3x – 5y – 5 = 0 and equally inclined to the axes.

The equation of the straight line passing through the points of intersection of 2x + 3y + 1 = 0 and 3x − 5y − 5 = 0 is

    \[\begin{array}{*{35}{l}} 2x\text{ }+\text{ }3y\text{ }+\text{ }1\text{ }+~\lambda \left( 3x~-~5y~-~5 \right)\text{ }=\text{ }0  \\ \left( 2\text{ }+\text{ }3\lambda  \right)x\text{ }+\text{ }\left( 3~-~5\lambda  \right)y\text{ }+\text{ }1~-~5\lambda ~=\text{ }0  \\ y\text{ }=\text{ }\text{ }\left[ \left( 2\text{ }+\text{ }3\lambda  \right)\text{ }/\text{ }\left( 3\text{ }\text{ }5\lambda  \right) \right]\text{ }\text{ }\left[ \left( 1\text{ }\text{ }5\lambda  \right)\text{ }/\text{ }\left( 3\text{ }\text{ }5\lambda  \right) \right]  \\ \end{array}\]

The required line is equally inclined to the axes. So, the slope of the required line is either 1 or − 1.

So,

    \[\begin{array}{*{35}{l}} \text{ }\left[ \left( 2\text{ }+\text{ }3\lambda  \right)\text{ }/\text{ }\left( 3\text{ }-\text{ }5\lambda  \right) \right]\text{ }=\text{ }1\text{ }and\text{ }\text{ }\left[ \left( 2\text{ }+\text{ }3\lambda  \right)\text{ }/\text{ }\left( 3\text{ }-\text{ }5\lambda  \right) \right]\text{ }=\text{ }-1  \\ -2\text{ }\text{ }-3\lambda ~=\text{ }3\text{ }\text{ }-5\lambda ~and\text{ }2\text{ }+\text{ }3\lambda ~=\text{ }3\text{ }-\text{ }5\lambda   \\ \end{array}\]

λ = 5/2 and 1/8

Now, substitute the values of λ in (2 + 3λ)x + (3 − 5λ)y + 1 − 5λ = 0, we get the equations of the required lines as:

    \[\begin{array}{*{35}{l}} \left( 2\text{ }+\text{ }15/2 \right)x\text{ }+\text{ }\left( 3\text{ }-\text{ }25/2 \right)y\text{ }+\text{ }1\text{ }\text{ }-25/2\text{ }=\text{ }0\text{ }and\text{ }\left( 2\text{ }+\text{ }3/8 \right)x\text{ }+\text{ }\left( 3\text{ }\text{ }-5/8 \right)y\text{ }+\text{ }1\text{ }\text{ }5/8\text{ }=\text{ }0  \\ 19x\text{ }\text{ }-19y\text{ }\text{ }23\text{ }=\text{ }0\text{ }and\text{ }19x\text{ }+\text{ }19y\text{ }+\text{ }3\text{ }=\text{ }0  \\ \end{array}\]

∴ The required equation is 19x – 19y – 23 = 0 and 19x + 19y + 3 = 0