If the points (1, 1, p) and (–3, 0, 1) be equidistant from the plane \vec{r} \cdot(3 \hat{i}+4 \hat{j}-12 \hat{k})+13=0, then find the value of p.
If the points (1, 1, p) and (–3, 0, 1) be equidistant from the plane \vec{r} \cdot(3 \hat{i}+4 \hat{j}-12 \hat{k})+13=0, then find the value of p.

Solution:

It is known to us that the distance of a point with position vector \vec{a} from the plane \vec{r} \cdot \vec{n}=d is given as
\left|\frac{\vec{a} \cdot \vec{n}-d}{|\vec{n}|}\right|
Now, the position vector of point (1,1, p) is given as
\overrightarrow{\mathrm{a}_{1}}=1 \hat{\mathrm{i}}+1 \hat{\mathrm{j}}+\mathrm{p} \hat{\mathrm{k}}
And, the position vector of point (-3,0,1) is given as
\overrightarrow{\mathrm{a}_{2}}=-3 \hat{\mathrm{i}}+0 \hat{\mathrm{j}}+1 \hat{\mathrm{k}}
It is given that the points (1,1, \mathrm{p}) and (-3,0,1) are equidistant from the plane \vec{r} \cdot(3 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}-12 \hat{\mathrm{k}})+13=0
Therefore,
\left|\frac{(1 \hat{i}+1 \hat{j}+p \hat{k}) \cdot(3 \hat{i}+4 \hat{j}-12 \hat{k})+13}{\sqrt{3^{2}+4^{2}+(-12)^{2}}}\right|  =\left|\frac{(-3 \hat{i}+0 \hat{j}+1 \hat{k}) \cdot(3 \hat{i}+4 \hat{j}-12 \hat{k})+13}{\sqrt{3^{2}+4^{2}+(-12)^{2}}}\right|
\begin{array}{l} \left|\frac{3+4-12 p+13}{\sqrt{9+16+144}}\right|  =\left|\frac{-9+0-12+13}{\sqrt{9+16+144}}\right| \\ \left|\frac{20-12 p}{\sqrt{169}}\right|  =\left|\frac{-8}{\sqrt{169}}\right| \\ |20-12 p|=8 \end{array}
\begin{array}{l} 20-12 p=\pm 8 \\ 20-12 p=8 \text { or, } 20-12 p=-8 \\ 12 p=12 \text { or }, 12 p=28 \\ p=1 \text { or, } p=7 / 3 \end{array}
As a result, the possible values of p are 1 and 7 / 3.